数学专业知识方面的结构化

1.什么是教师专业知识结构化面试

关于结构化面试,请参阅百度的/view/1309693.htm?fromId=1255446

不再赘述;

教师专业知识结构化面试:是教师职业(岗位)相关知识的一种确定流程、确定内容、确定评价标准的面试。教师的专业知识应该包括但不限于以下内容:

1、教学专业(语文、数学或宏观经济、传统文化等等—中学、小学、大学的教师所担任的教学科目都不同)知识;

2、教育心理学相关知识;

3、教学教法相关知识

2.数学教师专业知识包括哪几个方面

教师的专业发展包括:

1、专业知识

总的来说,就是与任教学科相关的专业知识。就其核心而言,自然是任教学科的系统知识,是任教学科的教学理论。正因为这样,一方面要巩固以前所学的专业知识,并将它们转化为活的知识,转变为能动的知识。另一方面,要不断更新已学的专业知识,使之能跟上时代的步伐。因为随着时代的高速发展,专业知识也在不断地更新,不停地发展。不仅如此,还必须突出其核心知识。具体地说,一方面要不断更新已有的学科知识,不懈地充实自己的学科知识,并将其用于教学实践;另一方面,要不断学习先进的教学理论,更新自己的教学理念,用新颖的教学理论来武装头脑。

2、专业能力

教师不光要发展教学专业知识,更要发展教学专业能力。具体一点,就是要不断地将教学专业知识转化为教学专业能力,将教学专业理论升华为教学专业技能。因为不是有了教学专业知识就能上课,有了教学专业理论就能辅导。也就是说,不论是上课还是辅导,都需要教学专业能力,都需要教学专业技能,因为教学不仅是一门科学,更是一门艺术。要想完善上课,就必须按照科学规律来进行设计;要想完美辅导,就必须按照艺术要求来进行构想;而要想进行科学设计,就需要教学专业能力;要想进行艺术构想,就需要教学专业技能。

3、专业理想

就是当教师的追求,就是做教师的理想。换句话说,教师应当为什么样的目标去奋斗,为什么样的梦想去拼搏;应该当一个什么层次的教师,做一个什么品位的教师。人们常说,不想当将军的士兵,不是一个好士兵。似乎也可以这么说,没有专业追求的教师,不会成为一个好教师;没有专业理想的教师,不会成为一个名教师。正因为这样,许多教师为专业追求而活着,为专业理想而拼着:他们有人追求做学者型的教师,有人追求当艺术型的教师;有人追求做奉献型的教师,有人追求当智慧型的教师;有人追求做改革型的教师,有人追求当创新型的教师。因此,只有发展了教师的专业理想,才能提高教师的档次,提升教师的品位。

4、专业思想

概括起来说,就是要通过各种教育体验,产生先进的教育理念;要通过多样的教育总结,形成科学的教育思想。具体地说,主要包括以下两个方面:一是在学科教学中,你以什么样的教育理念来组织教学活动,你以什么样的教育思想来活跃课堂教学。二是在教育活动中,你以什么样的教育理念来开展教育活动,你以什么样的教育思想来从事教育工作。由于教育专业思想不是静止不变的,而是动态发展的;不是固定不变的,而是不断演变的。所以,每个教师都必须产生自己的教育专业理念,形成自己的教育专业思想,而且还必须不断更新自己的教育专业理念,发展自己的教育专业思想。进而,使自己的教育专业思想不断向前发展,并永远走在时代的前列。

5、专业品格

就其内容而言,可能有许许多多,但其核心部分,也只有以下三点:一是终身从教。因为教师职业是个崇高的职业,是个灿烂的职业;它关涉到国家的前途和命运,关系到人类的发展与未来。因此,作为教师,不仅要热爱教师职业,更要立志终身从教。二是育人为本。也就是说,教师的本职工作不光要教书,更要育人;不光要尽心尽力教好书,更要不遗余力育好人;不光要为人民教好书,更要为国家育好人。三是为人师表。具体地说,要求学生做到的,教师首先要做到;要求学生带头的,教师首先要带头。

6、专业智慧

教育是一门科学,更是一门艺术。而艺术是最讲究智慧的,是最需要智慧的。所以,教育是最讲究智慧的,是最需要智慧的。而教育智慧不会凭空产生,不会从天而降;它只能来自先进的教育理论,源于坚实的教育实践,源自先进的教育理论与坚实的教育实践的融合。

3.小学数学专业知识答辩问题有哪些内容

小学数学答辩题及参考答案 01 A、义务教育阶段数学课程的基本出发点是什么? 基本出发点是促进学生全面、持续、和谐的发展。

B、数和数字有什么不同? 用来记数的符号叫做数字。常用的数字有四种:阿拉伯数字、中国小写数字、中国大写数字、罗马数字。

现在国际通用的数字是阿拉伯数字,他共有以下十个:1、2、3、4、5、6、7、8、9、0。数是由数字组成的。

在用位置原则计数时数是有十个数字中的一个或几个根据位置原则排列起来,表示事物的个数或次序。数字是构成数的基础,配上其他一些数字符号,可以表示各种各样的数。

02 A、《标准》明确指出:学习数学不仅要考虑数学自身的特点,更应遵循什么? 更应遵循学生学习数学的心理规律,强调学生从已有的生活经验出发,让学生亲生经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获的对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进一步的发展。 B、分析并解答下面的文字题 105减去78的差乘15,积是多少? 可以从问题入手分析,要求“积是多少”就要知道两个因数,一个因数15,另一个因数是105减去78的差,所以现求差后求积,即:(105-78)*15 03 A、请你谈谈义务教育阶段的数学课程应突出体现什么? 义务教育阶段的数学课程应突出的体现基础性、普及和发展性,使数学教育面向全体学生,实现: ??人人学有价值的数学; ??人人都能活的必需的数学; ??不同的人在数学上得到不同的发展。

B、下面各题的商是几位数,确定上的位数有什么规律?(除数是一位数的除法) 2016÷4 7035÷5 4543÷8 90180÷9 上面各题的商依次是三位数、四位数、三位数、五位数。根据除法法则可找出如下规律:一位数除多位数,如果被除数的前一位小于除数,那么商的位数就比被除数少一。

如果被除数的前一位大于或等于除数,那么商的位数就和被除数同样多。 04 A、《数学课程标准》在学生的数学学习内容上有何要求? 学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容有利于学生主动的进行观察、实验、猜测、验证、推理与交流等数学活动。

内容的呈现方式应采用不同的表达方式,以满足多样化的学习要求。 B、根据下面的文字题,从下面各式中选出正确算式,并将其余的算式正确的叙述出来。

252与173的和乘以8,再除以2,商是多少? (1)(252+173)*(8÷2) (2)(2)(252+173*8)÷2 (3)(3)(252+173)*8÷2 (4)(4)252+173*8÷2(5)(3)式正确 (1) 式:252与173的和乘以8除以2的商,积是多少? (2) 式:252加上173乘以8的积,再除以2,商是多少? (3)式:252加上173乘以8除以2,和是多少? 05 A、《数学课程标准》在学生学习数学的方式上有何? 有效的数学学习活动不能单纯的依赖模仿记忆,动手实践、自主探索与合作交流是学生学习数学的主要方式。由于学生所处的文化环境、家庭背景和自身思维方式不同,学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。

B、举例说明整除和除尽有什么关系? 整除一定是除尽,而除尽不一定是整除。 如:8÷4=2 说8能被4整除 2÷0.2=10 因为0.2是小数,不是自然数,只能说2能被0.2除尽,或0.2能除尽2,不能说整除。

07 A、《标准》要求对数学学习的评价要关注些什么? 对数学学习的评价要关注学生学习的结果,更要关注他们的学习过程;要关注学生数学学习的水平,更要关注他们在数学活动中所表现出来的情感与态度。帮助学生认识自我、建立信心。

B、“整数改写成小数,只要在小数后面添写0就行了。”这种说法对不对?为什么? 不对。

整数改写成小数,必须先在小数后面点上小数点,然后再添写0,如果不点小数点,只在整数后面添写0,就把原来的数扩大了10倍、百倍??数值就改变了。所以这种说法是错误的。

08 A、请谈谈现代信息技术的发展对数学教育的价值、目标、内容以及学与教的方式产生了重大的影响。数学课程的设计与实施应重视运用现代信息技术,特别要充分考虑计算器、计算机对数学学习内容和方式的影响,大力开发并向学生提供更为丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的强有力工具,致力于改变学生的学习方式,使学生乐意并有更多的精力投入到现实的、探索性的数学活动中去。

B、在研究近似数时,为什么2和2.0不一样?在研究近似数时,一定要注意精确到那一位。2是精确到个位,2.0是精确到十分位;2.0比2精确。

从四舍五入法得到的近似数来考虑,2和2.0不一样。近似数2是由不小于1.5,小于2.5之间的数精确到个位得到的;而近似数2.0是由不小于1.95,小于2.05之间的数精确到十分位得到的;近似数2.0的取值范围比近似数2的取值范围小,所以近似数2.0比2更精确。

09 A、《数学课程标准》将九年的学习时间具体划分为那几个学段? 分为三个阶段:第一学段(1—3年级) 第二学段(4—6)年级 第三学段(7—9年级) B、写出关于小数的两种分类方法。 (1)按整数部分来分类:小数分为纯小数和带小数。

(2)按小数部分的位数来分类:有限。

4.数学与应用数学专业的知识技能

毕业生应获得以下几方面的知识和能力:

1.具有扎实的数学基础,受到比较严格的科学思维训练,初步掌握数学科学的思想方法;

2.具有应用数学知识去解决实际问题,特别是建立数学模型的初步能力,了解某一应用程序;

3. 能熟练使用计算机(包括常用语言、工具及一些数学软件),具有编写简单应用程序的能力;

4.了解国家科学技术等有关政策和法规;

5.了解数学科学的某些新发展和应用前景;

6. 有较强的语言表达能力,掌握资料查询、文献检索及运用现代信息技术获取相关信息的基本方法,具有一定的科学研究和教学能力。

数学专业知识方面的结构化

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注