1.小学数学知识集锦
1 、每份数*份数=总数 总数÷每份数=份数 总数÷份数=每份数 2 、1倍数*倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 3 、速度*时间=路程 路程÷速度=时间 路程÷时间=速度 4 、单价*数量=总价 总价÷单价=数量 总价÷数量=单价 5 、工作效率*工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 1 、正方形 C周长 S面积 a边长 周长=边长* 4 C=4a 面积=边长*边长 S=a*a 2 、正方体 V:体积 a:棱长 表面积=棱长*棱长*6 S表=a*a*6 体积=棱长*棱长*棱长 V=a*a*a 3 、长方形 C周长 S面积 a边长 周长=(长+宽)*2 C=2(a+b) 面积=长*宽 S=ab 4 、长方体 V:体积 s:面积 a:长 b: 宽 h:高 (1)表面积(长*宽+长*高+宽*高)*2 S=2(ab+ah+bh) (2)体积=长*宽*高 V=abh 5 、三角形 s面积 a底 h高 面积=底*高÷2 s=ah÷2 三角形高=面积 *2÷底 三角形底=面积 *2÷高 6 、平行四边形 s面积 a底 h高 面积=底*高 s=ah 7 、梯形 s面积 a上底 b下底 h高 面积=(上底+下底)*高÷2 s=(a+b)* h÷2 8、圆形 S面积 C周长 ∏ d=直径 r=半径 (1)周长=直径*∏=2*∏*半径 C=∏d=2∏r (2)面积=半径*半径*∏ 9 、圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长 (1)侧面积=底面周长*高 (2)表面积=侧面积+底面积*2 (3)体积=底面积*高 (4)体积=侧面积÷2*半径 10 、圆锥体 v:体积 h:高 s;底面积 r:底面半径 体积=底面积*高÷3 总数÷总份数=平均数 11和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数 12和倍问题 和÷(倍数-1)=小数 小数*倍数=大数 (或者 和-小数=大数) 13差倍问题 差÷(倍数-1)=小数 小数*倍数=大数 (或 小数+差=大数) 14植树问题 1 非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那: 株数=段数+1=全长÷株距-1 全长=株距*(株数-1) 株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那就这样: 株数=段数=全长÷株距 全长=株距*株数 株距=全长÷株数 ⑶如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1 全长=株距*(株数+1) 株距=全长÷(株数+1) 2 封闭线路上的植树问题的数量关系如下 : 株数=段数=全长÷株距 全长=株距*株数 株距=全长÷株数 15盈亏问题 (盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数 16相遇问题 相遇路程=速度和*相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间 17追及问题 追及距离=速度差*追及时间 追及时间=追及距离÷速度差 速度差=追及距离÷追及时间 18流水问题 顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度 静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2 19浓度问题 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量*100%=浓度 溶液的重量*浓度=溶质的重量 溶质的重量÷浓度=溶液的重量 20利润与折扣问题 利润=售出价-成本 利润率=利润÷成本*100%=(售出价÷成本-1)*100% 涨跌金额=本金*涨跌百分比 折扣=实际售价÷原售价*100%(折扣利息=本金*利率*时间 税后利息=本金*利率*时间*(1-20%)。
2.小学数学知识集锦
小学数学复习考试知识点汇总一、小学生数学法则知识归类(一)笔算两位数加法,要记三条1、相同数位对齐;2、从个位加起;3、个位满10向十位进1。
(二)笔算两位数减法,要记三条1、相同数位对齐;2、从个位减起;3、个位不够减从十位退1,在个位加10再减。(三)混合运算计算法则1、在没有括号的算式里,只有加减法或只有乘除法的,都要从左往右按顺序运算;2、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;3、算式里有括号的要先算括号里面的。
(四)四位数的读法1、从高位起按顺序读,千位上是几读几千,百位上是几读几百,依次类推;2、中间有一个0或两个0只读一个“零”;3、末位不管有几个0都不读。(五)四位数写法1、从高位起,按照顺序写;2、几千就在千位上写几,几百就在百位上写几,依次类推,中间或末尾哪一位上一个也没有,就在哪一位上写“0”。
(六)四位数减法也要注意三条1、相同数位对齐;2、从个位减起;3、哪一位数不够减,从前位退1,在本位加10再减。(七)一位数乘多位数乘法法则1、从个位起,用一位数依次乘多位数中的每一位数;2、哪一位上乘得的积满几十就向前进几。
(八)除数是一位数的除法法则1、从被除数高位除起,每次用除数先试除被除数的前一位数,如果它比除数小再试除前两位数;2、除数除到哪一位,就把商写在那一位上面;3、每求出一位商,余下的数必须比除数小。(九)一个因数是两位数的乘法法则1、先用两位数个位上的数去乘另一个因数,得数的末位和两位数个位对齐;2、再用两位数的十位上的数去乘另一个因数,得数的末位和两位数十位对齐;3、然后把两次乘得的数加起来。
(十)除数是两位数的除法法则1、从被除数高位起,先用除数试除被除数前两位,如果它比除数小,2、除到被除数的哪一位就在哪一位上面写商;3、每求出一位商,余下的数必须比除数小。(十一)万级数的读法法则1、先读万级,再读个级;2、万级的数要按个级的读法来读,再在后面加上一个“万”字;3、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。
(十二)多位数的读法法则1、从高位起,一级一级往下读;2、读亿级或万级时,要按照个级数的读法来读,再往后面加上“亿”或“万”字;3、每级末尾的0都不读,其它数位有一个0或连续几个0都只读一个零。(十三)小数大小的比较比较两个小数的大小,先看它们整数部分,整数部分大的那个数就大,整数部分相同的,十分位上的数大的那个数就大,十分位数也相同的,百分位上的数大的那个数就大,依次类推。
(十四)小数加减法计算法则计算小数加减法,先把小数点对齐(也就是把相同的数位上的数对齐),再按照整数加减法则进行计算,最后在得数里对齐横线上的小数点位置,点上小数点。(十五)小数乘法的计算法则计算小数乘法,先按照乘法的法则算出积,再看因数中一共几位小数,就从积的右边起数出几位,点上小数点。
(十六)除数是整数除法的法则除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数小数点对齐,如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。(十七)除数是小数的除法运算法则除数是小数的除法,先移动除数小数点,使它变成整数;除数的小数点向右移几位,被除数小数点也向右移几位(位数不够在被除数末尾用0补足)然后按照除数是整数的小数除法进行计算。
(十八)解答应用题步骤1、弄清题意,并找出已知条件和所求问题,分析题里的数量关系,确定先算什么,再算什么,最后算什么; 2、确定每一步该怎样算,列出算式,算出得数;3、进行检验,写出答案。(十九)列方程解应用题的一般步骤1、弄清题意,找出未知数,并用X表示;2、找出应用题中数量之间的相等关系,列方程;3、解方程;4、检验、写出答案。
(二十)同分母分数加减的法则同分母分数相加减,分母不变,只把分子相加减。(二十一)同分母带分数加减的法则带分数相加减,先把整数部分和分数部分分别相加减,再把所得的数合并起来。
(二十二)异分母分数加减的法则异分母分数相加减,先通分,然后按照同分母分数加减的法则进行计算。(二十三)分数乘以整数的计算法则分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。
(二十四)分数乘以分数的计算法则分数乘以分数,用分子相乘的积作分子,分母相乘的积作分母。(二十五)一个数除以分数的计算法则一个数除以分数,等于这个数乘以除数的倒数。
(二十六)把小数化成百分数和把百分数化成小数的方法把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;把百分数化成小数,把百分号去掉,同时小数点向左移动两位。(二十七)把分数化成百分数和把百分数化成分数的方法把分数化成百分数,通常先把分数化成小数(除不尽通常保留三位小数),再把小数化成百分数;把百分数化成小数,先把百分数改写成分母是100的分数,能约分的要约成最简分数。
二、小学数学口决定义归类1、什么是图形的周长?围成一个图形所。
3.教师招考考试中,小学数学的专业知识怎样复习
一、重视基础,深入理解
在考前一个月,如果大家还对数学中的基本概念、方法和原理不清楚,解题时肯定会碰到各种各样的问题,容易丢失一些基本分。所以大家务必在最后完全吃透基础理论知识,深入地理解基本概念、公式、定理、图表的理解,掌握知识点,将数学知识进行分类,在自己的头脑中有一个完整的体系。
二、掌握方法,提高能力
利用最后一个月的时间来拓展解题方法,提高解题能力。把知识体系化、连贯化,并拓展做题方法及思路,熟悉考试出题方式。尤其是解综合性试题和应用题能力。大家要搞清有关知识的纵向、横向联系,形成一个有机的体系。同时,也要提高做题质量,每做完一题后,就要总结其所覆盖的知识面并且归纳其所属题型,做到举一反三。
三、选择题答题技巧
掌握选择题应试的基本方法:要抓住选择题的特点,充分地利用选择题提供的信息,决不能把所有的选择题都当作解答题来做。首先,看清试题的指导语,确认题型和要求。其次,审查分析题干,确定选择的范围与对象,要注意分析题干的内涵与外延规定。再次,辨析选项,排误选正。最后,要正确标记和仔细核查。
(1)特值法。在选择题的选项中分别取特殊值进行验证或排除,对于方程或不等式求解、确定参数的取值范围等问题格外有效。
(2)反例法。把选择题各选择项中错误的答案排除,余下的便是正确答案。
(3)特殊法。当对某一选择题没有把握时,可以采用此方法。要注意寻找线索,如果其他选项大体相当,唯有某一个选项特别长或特别短,那它成为正确答案的可能性很大。
(4)猜测法。因为数学选择题没有选错倒扣分的规定,实在解不出来,猜测可以创造更多的得分机会,特别是最后一个选择题。
4.初中数学教育教学专业知识考什么
一、湖北省教师招聘考试真题试卷参考。
二、湖北省2013年教师考试录用大纲与分析详细介绍。
三、2013教师招聘考试全套在线视频教学(重点)。
四、2013教师招聘考试全套在线音频教学(重点)。
五、小学数学复习资料。
六、湖北省教师招聘考试面试资料与面试视频。
七、湖北省教师招聘考试预测模拟试卷。
八、教师招聘综合知识(政治)。
九、教师招聘综合知识(经济)。
十、教师招聘综合知识(法律)。
十一、教师招聘综合知识(科技)。
十二、教师招聘综合知识(历史)。
十三、教师招聘综合知识(时事)。
十四、教师招聘综合知识(英语)。
十五、教师招聘综合知识(计算机)。
十六、教育教学专业知识(教育学复习资料)。
十七、教育教学专业知识(心理学复习资料)。
十八、教育教学专业知识(教育心理学复习资料)。
十九、教育教学专业知识(教育法律法规复习资料)。
二十、教育教学专业知识(新课程理念复习资料)。
二十一、教育教学专业知识(教师职业道德修养复习资料)。
二十二、教育教学专业知识(教学技能复习资料)。
5.小学数学知识集锦
六年级奥数:比例问题(1) 答 案 1. 5;8;80.设4:x= ,可以求得x=5,y=8, z=80.2. 10在3:5里,如果前项加6,前项为3+6=9,即扩大了93=3倍,要使比值不变,后项也应扩大3倍,即为53=15.后项应增加15-5=10.3. 5根据:实际距离=图上距离比例尺.可得:6(12:1)=0.5(厘米)=5(毫米).4. 约为20.4亩、0.8亩、0.4亩总面积:120120=14400(平方米)5. 120甲、乙两种铅笔单价之比为3:4,又两种笔用去的单价相同,故甲乙两种铅笔数之比为4:3.其中甲占总数的 即 ,甲种铅笔数为 (支).6. 3:1因为2:5=4:10,所以4辆车共有10个轮子,如果4辆车全是小卧车,那么轮子数应为16个,比实际多6个.故每4辆车中有摩托车(44-10)(4-2)=3(辆),有小卧车1辆.所以摩托车与小卧车的辆数之比为3:1.7. 240设A=7K,B=13K, ,故K=12,从而A+B=20K=240.8. 56二、三年级占全校总数的1-25%=75%,故三年级占全校总数的75% .一年级比三年级少的40人占全校的 .于是全校有 (人),一年级学生有22425%=56(人).9. 石子占总份数的 ,即 .当石子用5吨时,混凝土共有 (吨),因为水泥占总份数的 即 ,那么 吨混凝土中的水泥应为 (吨).同法可求得 吨混凝土中的黄砂为: (吨)水泥缺 (吨),黄砂多 (吨).10. 6设甲的速度为每小时行13K米,乙的速度为每小时行11K千米,则两地相距(13K+11K)0.5=12K千米.甲追上乙需12K(13K-11K)=6(小时).11. 设甲和乙的最大公约数为K,则甲数为5K,乙数为3K,它们的最小公倍数为15K.于是K+15K=1040,解得K=65.从而甲数为565=325,乙数为365=195.12. 旧合金的重量为36-6=30(克).铜在旧合金中占 ,故旧合金中有铜 (克),有锌30-12=18(克).新合金中,铜仍为12克,锌为18+6=24(克),于是铜与锌的比为12:24=1:2.13. 上坡路占总路程的 ,上坡路程为 (千米),上坡时间为 (小时).平路时间为 (小时),下坡时间为 (小时).全程时间为 (小时)14. 注满容器20厘米高的水与30厘米高的水所用时间之比为20:30=2:3.注20厘米的水的时间为 (分),这说明注入长方形铁块所占空间的水要用时间为12-3=9(分).已知长方形铁块高为20厘米,因此它们底的面积比等于它们的体积之比,而它们的体积比等于所注入时间之比,故长方形底面面积:容器底面面积=9:12=3:4. 六年级奥数:比例问题(2) 答 案 1. 第一个数是 ,第二个数是 ,第三个数是 .2. 将四个数分别看成1份、3份、5分、7份,那么一、二两个数相差2份是 ,故一份是 .四数之和为 .3. 2.5两城间实际距离为 (万厘米),图上距离实际为 (厘米).4. 64;48小华、小青,小明所有朵数之比为5:6:8.将它们做的朵数看成5份、6份和8份,小明比小青多2份是16朵,故每份为8朵,从而小明做了88=64(朵),小青做了85=40(朵).5. 48人,44人,52人二班占总人数的 ,三班占总人数的 ,故二班比三班少 ,于是参赛人数为 =144(人).其中,一班有 (人),二班有 (人),三班有 (人).6. 甲包糖原来占总量的 ,后来占总重量的 ,那么10克占总重量的 .故两包糖的重量为 (克).7. 30、18第一小组人数原来占总人数的 ,后来占总人数的 ,故14人占总数的 .那么总人数为 (人).第一组原有人数为 (人),第二组原有人数为 (人).8. 4.8直角三角形两直角边分别长 (厘米)和 (厘米).故其面积为 (平方厘米),斜边上的高为24210=4.8(厘米).9. 1000立方厘米长与宽的比为2:1=4:2,宽与高的比为2:1,故长、宽、高的连比为4:2:1.其中高为 (厘米),宽为52=10(厘米),长为54=20(厘米).体积为20105=1000(立方厘米).10. 鸡占总份数的 .故表示鸡的扇形圆心角应为 .11. 将甲、乙、丙的高看作1、2、3份,上底看作6、9、4份,下底看作12、15、10份,那么甲、乙、丙面积的份数依次是:甲:(6+12)12=9;乙:(9+15)22=24;丙:(4+10)32=21.故乙、丙梯形面积份数之和是甲梯形份数的(21+24)9=5(倍)故乙丙梯形面积之和为305=150(平方厘米).12. 设原水速为每小时x公里,甲乙两港相距y公里,因路程一定,时间与速度成反比例,故有(8-x):(8+x)=1:2解得 .又有 .解得y=20,即甲、乙两港相距20公里.13. 将一个酒精瓶容积看成一个单位,则在一个瓶中,酒精占 ,水占 ;而在另一个瓶中,酒精占 ;水占 ,于是在混合液中,酒精和水的体积之比 .14. 相遇前甲、乙速度之比为3:2,相遇时甲、乙分别走了全程的 和 .相遇后,甲、乙速度之比为(3120%):(2130%)=18:13.当甲走完剩下路程的 时,乙又走完全程的 ,这时离A还有全程的 ,于是全程为 (千米).。
6.小学数学知识大全的介绍
小学数学公式大全, 第一部分: 概念。
1,加法交换律:两数相加交换加数的位置,和不变。 2,加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3,乘法交换律:两数相乘,交换因数的位置,积不变。 4,乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5,乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。 如:(2+4)*5=2*5+4*5 6,除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
0除以任何不是0的数都得0。 简便乘法:被乘数,乘数末尾有0的乘法,可以先把0前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7,什么叫等式 等号左边的数值与等号右边的数值相等的式子叫做等式。 等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8,什么叫方程式 答:含有未知数的等式叫方程式。 9, 什么叫一元一次方程式 答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
10,分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。 11,分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。 12,分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。 13,分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14,分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。 15,分数除以整数(0除外),等于分数乘以这个整数的倒数。
16,真分数:分子比分母小的分数叫做真分数。 17,假分数:分子比分母大或分子和分母相等的分数叫做假分数。
假分数大于或等于1。 18,带分数:把假分数写成整数和真分数的形式,叫做带分数。
19,分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。 20,一个数除以分数,等于这个数乘以分数的倒数。
21,甲数除以乙数(0除外),等于甲数乘以乙数的倒数。 分数的加,减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。 分数的乘法则:用分子的积做分子,用分母的积做分母。
22,什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3 比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
23,什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18 24,比例的基本性质:在比例里,两外项之积等于两内项之积。
25,解比例:求比例中的未知项,叫做解比例。如3:χ=9:18 26,正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。
如:y/x=k( k一定)或kx=y 27,反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。 如:x*y = k( k一定)或k / x = y 28,百分数:表示一个数是另一个数的百分之几的数,叫做百分数。
百分数也叫做百分率或百分比。 29,把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。
其实,把小数化成百分数,只要把这个小数乘以100%就行了。 30,把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
31,把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。
32,把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。 33,要学会把小数化成分数和把分数化成小数的化发。
34,最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。(或几个数公有的约数,叫做这几个数的公约数。
其中最大的一个, 叫做最大公约数。) 35,互质数: 公约数只有1的两个数,叫做互质数。
36,最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。 37,通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。
(通分用最小公倍数) 38,约分:把一个分数化成同它相等,但分子,分母都比较小的分数,叫做约分。(约分用最大公约数) 39,最简分数:分子,分母是互质数的分数,叫做最简分数。
40,分数计算到最后,得数必须化成最简分数。 41,个位上是0,2,4,6,8的数,都能被2整除,即能用2进行约分。
个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。
43,偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。
。
7.高分求2013湖北农村教师招聘考试综合知识复习资料,和小学数学专业
一、湖北省教师招聘考试真题试卷参考。
二、湖北省2013年教师考试录用大纲与分析详细介绍。三、2013教师招聘考试全套在线视频教学(重点)。
四、2013教师招聘考试全套在线音频教学(重点)。五、初中信息技术专业复习资料。
六、湖北省教师招聘考试面试资料与面试视频。七、湖北省教师招聘考试预测模拟试卷。
八、教师招聘综合知识(政治)。九、教师招聘综合知识(经济)。
十、教师招聘综合知识(法律)。十一、教师招聘综合知识(科技)。
十二、教师招聘综合知识(历史)。十三、教师招聘综合知识(时事)。
十四、教师招聘综合知识(英语)。十五、教师招聘综合知识(计算机)。
十六、教育教学专业知识(教育学复习资料)。十七、教育教学专业知识(心理学复习资料)。
十八、教育教学专业知识(教育心理学复习资料)。十九、教育教学专业知识(教育法律法规复习资料)。
二十、教育教学专业知识(新课程理念复习资料)。二十一、教育教学专业知识(教师职业道德修养复习资料)。
二十二、教育教学专业知识(教学技能复习资料)。参考下这个资料下,老胖子网里面有下载。
8.小学数学<>
9. 有7个数,它们的平均数是18。
去掉一个数后,剩下6个数的平均数是19;再去掉一个数后,剩下的5个数的平均数是20。求去掉的两个数的乘积。
解: 7*18-6*19=126-114=12 6*19-5*20=114-100=14 去掉的两个数是12和14它们的乘积是12*14=168 10. 有七个排成一列的数,它们的平均数是 30,前三个数的平均数是28,后五个数的平均数是33。求第三个数。
解:28*3+33*5-30*7=39。 11. 有两组数,第一组9个数的和是63,第二组的平均数是11,两个组中所有数的平均数是8。
问:第二组有多少个数? 解:设第二组有x个数,则63+11x=8*(9+x),解得x=3。 12.小明参加了六次测验,第三、第四次的平均分比前两次的平均分多2分,比后两次的平均分少2分。
如果后三次平均分比前三次平均分多3分,那么第四次比第三次多得几分? 解:第三、四次的成绩和比前两次的成绩和多4分,比后两次的成绩和少4分,推知后两次的成绩和比前两次的成绩和多8分。因为后三次的成绩和比前三次的成绩和多9分,所以第四次比第三次多9-8=1(分)。
13. 妈妈每4天要去一次副食商店,每 5天要去一次百货商店。妈妈平均每星期去这两个商店几次?(用小数表示) 解:每20天去9次,9÷20*7=3.15(次)。
14. 乙、丙两数的平均数与甲数之比是13∶7,求甲、乙、丙三数的平均数与甲数之比。 解:以甲数为7份,则乙、丙两数共13*2=26(份) 所以甲乙丙的平均数是(26+7)/3=11(份) 因此甲乙丙三数的平均数与甲数之比是11:7。
15. 五年级同学参加校办工厂糊纸盒劳动,平均每人糊了76个。已知每人至少糊了70个,并且其中有一个同学糊了88个,如果不把这个同学计算在内,那么平均每人糊74个。
糊得最快的同学最多糊了多少个? 解:当把糊了88个纸盒的同学计算在内时,因为他比其余同学的平均数多88-74=14(个),而使大家的平均数增加了76-74=2(个),说明总人数是14÷2=7(人)。因此糊得最快的同学最多糊了 74*6-70*5=94(个)。
16. 甲、乙两班进行越野行军比赛,甲班以4.5千米/时的速度走了路程的一半,又以5.5千米/时的速度走完了另一半;乙班在比赛过程中,一半时间以4.5千米/时的速度行进,另一半时间以5.5千米/时的速度行进。问:甲、乙两班谁将获胜? 解:快速行走的路程越长,所用时间越短。
甲班快、慢速行走的路程相同,乙班快速行走的路程比慢速行走的路程长,所以乙班获胜。 17. 轮船从A城到B城需行3天,而从B城到A城需行4天。
从A城放一个无动力的木筏,它漂到B城需多少天? 解:轮船顺流用3天,逆流用4天,说明轮船在静水中行4-3=1(天),等于水流3+4=7(天),即船速是流速的7倍。所以轮船顺流行3天的路程等于水流3+3*7=24(天)的路程,即木筏从A城漂到B城需24天。
18. 小红和小强同时从家里出发相向而行。小红每分走52米,小强每分走70米,二人在途中的A处相遇。
若小红提前4分出发,且速度不变,小强每分走90米,则两人仍在A处相遇。小红和小强两人的家相距多少米? 解:因为小红的速度不变,相遇地点不变,所以小红两次从出发到相遇的时间相同。
也就是说,小强第二次比第一次少走4分。由 (70*4)÷(90-70)=14(分) 可知,小强第二次走了14分,推知第一次走了18分,两人的家相距 (52+70)*18=2196(米)。
19. 小明和小军分别从甲、乙两地同时出发,相向而行。若两人按原定速度前进,则4时相遇;若两人各自都比原定速度多1千米/时,则3时相遇。
甲、乙两地相距多少千米? 解:每时多走1千米,两人3时共多走6千米,这6千米相当于两人按原定速度1时走的距离。所以甲、乙两地相距6*4=24(千米)20. 甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。
相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用24秒同时回到原地。求甲原来的速度。
解:因为相遇前后甲、乙两人的速度和不变,相遇后两人合跑一圈用24秒,所以相遇前两人合跑一圈也用24秒,即24秒时两人相遇。 设甲原来每秒跑x米,则相遇后每秒跑(x+2)米。
因为甲在相遇前后各跑了24秒,共跑400米,所以有24x+24(x+2)=400,解得x=7又1/3米。 21. 甲、乙两车分别沿公路从A,B两站同时相向而行,已知甲车的速度是乙车的1.5倍,甲、乙两车到达途中C站的时刻分别为5:00和16:00,两车相遇是什么时刻? 解:9∶24。
解:甲车到达C站时,乙车还需16-5=11(时)才能到达C站。乙车行11时的路程,两车相遇需11÷(1+1.5)=4.4(时)=4时24分,所以相遇时刻是9∶24。
22. 一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米。坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见快车驶过的时间是多少秒? 解:快车上的人看见慢车的速度与慢车上的人看见快车的速度相同,所以两车的车长比等于两车经过对方的时间比,故所求时间为11 23. 甲、乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒可追上乙;若乙比甲先跑2秒,则甲跑4秒能追上乙。
问:两人每秒各跑多少米? 解:甲乙速度差为10/5=2 速度比为(4+2):4=6:4 所以甲每秒跑6米,乙。
9.能否告诉我小学数学教育视频的网址
小学数学教育网:/小学数学专业网:/当当网(影视):://search.dangdang.com/search.aspx?key=%D0%A1%D1%A7%CA%FD%D1%A7%BD%CC%D1%A7&selbook=0&selmusic=0&selmovie=0&key1=&key2=&key3=&key4=&key5=&catalog=05&SearchFromTop=1小学数学网课件:/class/2_1.htm思库学习网(视频):/Video_search.asp思库学习网(课件):/Soft_search.asp下次找到再发给你吧。