物理电子学专业知识

1.物理电子学主要学什么

物理电子学(下面为研究方向)

3光电信息处理及传感技术

4检测技术及自动化偏硬件与动手能力

电路与系统(下面为研究方向)

2图像技术与智能系统

3嵌入式系统与SOC设计 硬件及端口

5传感器网抄络与信息处理以太英特网的结构及链路结构

微电袭子学与固体电子学(下面为研究方向)

1集成电路设计与系统集成电路设计研发

3集成电路工艺及封装技术 电路板的连接及封装

控制理论百与控制工程(下面为研究方向)

1网络化控制系统理论与应用 控制综合

2鲁棒控制 控制器件的开发

3嵌入式系统分析与应用 芯片开发与接口驱动

4智能机器人系统

5智能控制理论与应用

6运动控制与电力电子技术

7智能化集成系统

11智能控制理论与应用

系统工程(下面为研究方向)

2信息系统工程

4系统与信息处理

5标准化系统工程

模式识别与智能系统(下面为研究方向)

1图像处理与模式识别

3人工智能

4智能检度测与智能控制

6智能信息融合

2.物理电子学科的内容是什么

物理电子学是电子学、近代物理学、光电子学、量子电子学、超导电子学及相关技术的交叉学科,主要在电子工程和信息科学技术领域内进行基础和应用研究。

近年来本学科发展特别迅速,不断涵盖新的学科领域,促进了电磁场与微波技术、微电子学与固体电子学、电路与系统等二级学科以及信息与通信系统、光学工程等相关一级学科的拓展,形成了若干新的科学技术增长点,如光波与光子技术、信息显示技术与器件、高速光纤通信与光纤网等,成为下一世纪信息科学与技术的重要基石之一。 物理电子学研究粒子物理、等离子体物理、激光等物理前沿对电子工程和信息科学的概念和方法所产生的影响,及由此而形成的电子学的新领域和新生长点。

本学科重研究在强辐照、低信噪比、高通道密度等极端条件下,处理小时间尺度信号的技术,以及这些技术在广泛领域内的应用前景。以下的研究方向所要解决的问题超越单一学科的研究领域,形成物理电子学的一个独特的部分: 量子通讯理论和实验研究:量子计算机是未来计算机的发展方向,在理论和实验上研究量子通讯技术是实现下一代计算机的基础,对量子计算机的研究有着非常重要的意义。

实时物理信息处理:物理前沿(例如粒子物理)实验的特点之一是信息量大,而有用的信息量同总信息量之比相差10到15个数量级,这已远远超出一般电子技术的极限。如何根据物理的要求实时处理大量数据,从而得到有用的信息,是实验成功的关键。

这一方向的研究成果,对大系统的集成、实时操作系统应用都有重要的意义 强噪声背景下的随机信息提取技术:在微观尺度上,来自传感器的信号往往低于噪声,同时又具有随机性。研究在强噪声背景下的随机信号和瞬态物理信息的提取是物理前沿学科提出的要求,也是雷达、声纳等领域的信号处理基础。

非线性电子学:采用电子学实验方法研究非线性现象,用电子学手段产生混沌现象,并研究如何实现混沌同步和混沌通信。 高速信号互连及其物理机制的研究:当数据传输率达到千兆位或更高时,信号在电缆、印刷板等载体上的传输涉及介质损耗、趋肤效应和电场分布等物理机制,只有引入物理学的研究方法,才能解决这些电子工程和信息技术中的问题。

辐照电子学:辐照造成半导体材料的损伤,导致其性能降低甚至失效。研究辐照对器件性能和寿命的影响,选择耐辐照的材料和解决辐射场的测量,对应用于军事和空间的电子工程、核安全技术、和核医学都有重要的意义。

3.物理电子学科的内容是什么

物理电子学是电子学、近代物理学、光电子学、量子电子学、超导电子学及相关技术的交叉学科,主要在电子工程和信息科学技术领域内进行基础和应用研究。近年来本学科发展特别迅速,不断涵盖新的学科领域,促进了电磁场与微波技术、微电子学与固体电子学、电路与系统等二级学科以及信息与通信系统、光学工程等相关一级学科的拓展,形成了若干新的科学技术增长点,如光波与光子技术、信息显示技术与器件、高速光纤通信与光纤网等,成为下一世纪信息科学与技术的重要基石之一。

物理电子学研究粒子物理、等离子体物理、激光等物理前沿对电子工程和信息科学的概念和方法所产生的影响,及由此而形成的电子学的新领域和新生长点。本学科重研究在强辐照、低信噪比、高通道密度等极端条件下,处理小时间尺度信号的技术,以及这些技术在广泛领域内的应用前景。以下的研究方向所要解决的问题超越单一学科的研究领域,形成物理电子学的一个独特的部分:

量子通讯理论和实验研究:量子计算机是未来计算机的发展方向,在理论和实验上研究量子通讯技术是实现下一代计算机的基础,对量子计算机的研究有着非常重要的意义。

实时物理信息处理:物理前沿(例如粒子物理)实验的特点之一是信息量大,而有用的信息量同总信息量之比相差10到15个数量级,这已远远超出一般电子技术的极限。如何根据物理的要求实时处理大量数据,从而得到有用的信息,是实验成功的关键。这一方向的研究成果,对大系统的集成、实时操作系统应用都有重要的意义

强噪声背景下的随机信息提取技术:在微观尺度上,来自传感器的信号往往低于噪声,同时又具有随机性。研究在强噪声背景下的随机信号和瞬态物理信息的提取是物理前沿学科提出的要求,也是雷达、声纳等领域的信号处理基础。

非线性电子学:采用电子学实验方法研究非线性现象,用电子学手段产生混沌现象,并研究如何实现混沌同步和混沌通信。

高速信号互连及其物理机制的研究:当数据传输率达到千兆位或更高时,信号在电缆、印刷板等载体上的传输涉及介质损耗、趋肤效应和电场分布等物理机制,只有引入物理学的研究方法,才能解决这些电子工程和信息技术中的问题。

辐照电子学:辐照造成半导体材料的损伤,导致其性能降低甚至失效。研究辐照对器件性能和寿命的影响,选择耐辐照的材料和解决辐射场的测量,对应用于军事和空间的电子工程、核安全技术、和核医学都有重要的意义。

4.关于物理电子学的就业前景

微电子专业,

业务培养目标:本专业培养掌握微电子学专业所必需的基础知识、基本理论和基本实验技能,能在微电子学及相关领域从事科研、教学、科技开发、工程技术、生产管理与行政管理等工作的高级专门人才。

业务培养要求:本专业学生主要学习微电子学的基本理论和基本知识,受到科学实验与科学思维的基本训练,具有良好科学素养,掌握大规模集成电路及新型半导体器件的设计、制造及测试所必需的基本理论和方法,具有电路分析、工艺分析、器件性能分析和版图设计等的基本能力。

毕业生应获得以下几方面的知识和能力:

1.掌握数学、物理等方面的基本理论和基本知识;

2.掌握固体物理学、电子学和VLSI设计与制造等方面的基本理论和基本知识,掌握集成电路和其它半导体器件的分析与设计方法,具有独立进行版图设计、器件性能分析和指导VLSI工艺流程的基本能力;

3.了解相近专业的一般原理和知识;

4.熟悉国家电子产业政策、国内外有关的知识产权及其它法律法规;

5.了解VLSI和其它新型半导体器件的理论前沿、应用前景和最新发展动态,以及电子产业发展状况;

6.掌握资料查询、文献检索及运用现代信息技术获取相关信息的基本方法;具有一定的实验设计,创造实验条件,归纳、整理、分析实验结果,撰写论文,参与学术交流的能力。

主干学科:电子科学与技术

主要课程:半导体物理及实验、半导体器件物理、集成电路设计原理、集成电路工艺原理、集成电路CAD、微电子学专业实验和集成电路工艺实习等。

学得好的话,前途是非常不错的

5.物理电子学专业研究方向有哪些

微电子学是研究在固体(主要是半导体)材料上构成的微小型化电路、电路及系统的电子学分支。

作为电子学的分支学科,它主要研究电子或例子在固体材料中的运动规律及其应用,并利用它实现信号处理功能的科学,以实现电路的系统和集成为目的,实用性强。微电子学又是信息领域的重要基础学科,在这一领域上,微电子学是研究并实现信息获取、传输、存储、处理和输出的科学,是研究信息获取的科学,构成了信息科学的基石,其发展书评直接影响着整个信息技术的发展。微电子科学技术的发展水平和产业规模是一个国家经济实力的重要标志。

微电子学是一门综合性很强的边缘学科,其中包括了半导体器件物理、集成电路工艺和集成电路及系统的设计、测试等多方面的内容;设计了固体物理学、量子力学、热力学与统计物理学、材料科学、电子线路、信号处理、计算机辅助设计、测试和加工、图论、化学等多个领域。

微电子学是一门发展极为迅速的学科,高集成度、低功耗、高性能、高可靠性是微电子学发展的方向。信息技术发展的方向是多媒体(智能化)、网络化和个体化。要求系统获取和存储海量的多媒体信息、以极高速度精确可靠的处理和传输这些信息并及时地把有用信息显示出来或用于控制。所有这些都只能依赖于微电子技术的支撑才能成为现实。超高容量、超小型、超高速、超高频、超低功耗是信息技术无止境追求的目标,是微电子技术迅速发展的动力。

微电子学渗透性强,其他学科结合产生出了一系列新的交叉学科。微机电系统、生物芯片就是这方面的代表,是近年来发展起来的具有广阔应用前景的新技术。

培养要求:本专业学生主要学习微电子学的基本理论和基本知识,受到科学实验与科学思维的基本训练,具有良好科学素养,掌握大规模集成电路及新型半导体器件的设计、制造及测试所必需的基本理论和方法,具有电路分析、工艺分析、器件性能分析和版图设计等的基本能力。

主干学科:电子科学与技术

主要课程:半导体物理及实验、半导体器件物理、集成电路设计原理、集成电路工艺原理、集成电路CAD、微电子学专业实验和集成电路工艺实习等

参考资料:图书馆

6.我想考物理电子学的研,你了解他的就业方向吗

不同学校的物理电子学不一样。

大部分学校的物理电子学偏微电子。微电子的就业很好。

有部分学校的物理电子学偏光电子。光电子是未来方向,但是,现在的情况不如微电子。

微电子专业,

业务培养目标:本专业培养掌握微电子学专业所必需的基础知识、基本理论和基本实验技能,能在微电子学及相关领域从事科研、教学、科技开发、工程技术、生产管理与行政管理等工作的高级专门人才。

光电子专业的毕业生主要面向现今就业机会多、广、好的光电子行业。从事光电子产品、器件和平板显示器的制造、装配、调试、维修、检测、生产管理、售后服务、产品代理和销售等多方面工作。

物理电子学专业知识

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注