1.最基础的数学几何公式
初中数学几何公式
1 过两点有且只有一条直线
2 两点之间线段最短
3 同角或等角的补角相等
4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 同位角相等,两直线平行
10 内错角相等,两直线平行
11 同旁内角互补,两直线平行
12 两直线平行,同位角相等
13 两直线平行,内错角相等
15 定理 三角形两边的和大于第三边
16 推论 三角形两边的差小于第三边
17 三角形内角和定理 三角形三个内角的和等于180°
18 推论1 直角三角形的两个锐角互余
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 推论3 三角形的一个外角大于任何一个和它不相邻的内角
21 全等三角形的对应边、对应角相等
22 边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25 边边边公理(SSS) 有三边对应相等的两个三角形全等
26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等14 两直线平行,同旁内角互补
27 定理1 在角的平分线上的点到这个角的两边的距离相等
28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29 角的平分线是到角的两边距离相等的所有点的集合
30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
2.教师考编《学科专业知识》如何复习
1.教育基础知识(教育理论及应用)。
根据中学、小学、幼儿园教师岗位的不同要求,分别命制试题。2.学科专业知识(学科知识与教学)。
分三个层次,由考生根据报考层次、学科选考一科:高中、初中阶段:语文、数学、英语、政治、历史、地理、物理、化学、生物、信息技术(以上科目高中、初中相同)、科学、社会(后两科仅报考初中教师者选考)。小学阶段:语文、数学、英语。
教师招聘考试复习资料幼儿园阶段:学前教育。1.教育基础知识。
包括教育学、心理学、教育政策法规等。2.学科专业知识。
包括所报考对应层次学科教学内容、高等师范教育对应学科内容(含教材教法)等。确认自己所需备考科目后,开始着手准备相应资料。
但是还是建议您在中公教育报个辅导班,您可以到当地的中公教育咨询一下。
3.急需,,初中所有学科要掌握的知识点和公式
整式:①平方差公式:. a^2-b^2=(a+b)(a-b) ②完全平方公式: a^2±2ab+b^2=(a±b)^2 ③立方和公式:a^3+b^3= (a+b)(a^2-ab+b^2). 立方差公式:a^3-b^3= (a-b)(a^2+ab+b^2). ④完全立方公式: a^3±3a^2b+3ab^2±b^3=(a±b)^3 以上是初中的整式所有公式。
关于因事分解。请看我德参考资料。
里面侑非常详细德步骤。一步一步教伱德。
乘法与因式分解 a^2-b^2=(a+b)(a-b) a^3+b^3=(a+b)(a^2-ab+b^2) a^3-b^3=(a-b(a^2+ab+b^2) 三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a| 一元二次方程的解 -b+√(b^2-4ac)/2a -b-√(b^2-4ac)/2a 根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理 判别式 b^2-4ac=0 注:方程有两个相等的实根 b^2-4ac>0 注:方程有两个不等的实根。
4.初中数学教师资格证专业知识考什么
教师资格考试统考学科专业知识考试大纲:
《数学学科知识与教学能力》(初级中学)
一、考试目标
1.学科知识的掌握和运用。掌握大学专科数学专业基础课程的知识、中学数学的知识。具有在初中数学教学实践中综合而有效地运用这些知识的能力。
2.初中数学课程知识的掌握和运用。理解初中数学课程的性质、基本理念和目标,熟悉《义务教育数学课程标准(2011年版)》(以下简称《课标》)规定的教学内容和要求。
3. 数学教学知识的掌握和应用。理解有关的数学教学知识,具有教学设计、教学实施和教学评价的能力。
二、考试内容模块与要求
1.学科知识
数学学科知识包括大学专科数学专业基础课程、高中数学课程中的必修内容和部分选修内容以及初中数学课程中的内容知识。
大学专科数学专业基础课程知识是指:数学分析、高等代数、解析几何、概率论与数理统计等大学专科数学课程中与中学数学密切相关的内容。
其内容要求是:准确掌握基本概念,熟练进行运算,并能够利用这些知识去解决中学数学的问题。
高中数学课程中的必修内容和部分选修内容以及初中数学课程知识是指高中数学课程中的必修内容、选修课中的系列1、2的内容以及选修3—1(数学史选讲),选修4—1(几何证明选讲)、选修4—2(矩阵与变换)、选修4—4(坐标系与参数方程)、选修4—5(不等式选讲)以及初中课程中的全部数学知识。
其内容要求是:理解中学数学中的重要概念,掌握中学数学中的重要公式、定理、法则等知识,掌握中学常见的数学思想方法,具有空间想象、抽象概括、推理论证、运算求解、数据处理等基本能力以及综合运用能力。
2.课程知识
了解初中数学课程的性质、基本理念和目标。
熟悉《课标》所规定的教学内容的知识体系,掌握《课标》对教学内容的要求。
能运用《课标》指导自己的数学教学实践。
3.教学知识
掌握讲授法、讨论法、自学辅导法、发现法等常见的数学教学方法。
掌握概念教学、命题教学等数学教学知识的基本内容。
了解包括备课、课堂教学、作业批改与考试、数学课外活动、数学教学评价等基本环节的教学过程。
掌握合作学习、探究学习、自主学习等中学数学学习方式。
掌握数学教学评价的基本知识和方法。
4.教学技能
(1)教学设计
能够根据学生已有的知识水平和数学学习经验,准确把握所教内容与学生已学知识的联系。
能够根据《课标》的要求和学生的认知特征确定教学目标、教学重点和难点。
能正确把握数学教学内容,揭示数学概念、法则、结论的发展过程和本质,渗透数学思想方法,体现应用与创新意识。
能选择适当的教学方法和手段,合理安排教学过程和教学内容,在规定的时间内完成所选教学内容的教案设计。
(2)教学实施
能创设合理的数学教学情境,激发学生的数学学习兴趣,引导学生自主探索、猜想和合作交流。
能依据数学学科特点和学生的认知特征,恰当地运用教学方法和手段,有效地进行数学课堂教学。
能结合具体数学教学情境,正确处理数学教学中的各种问题。
(3)教学评价
能采用不同的方式和方法,对学生知识技能、数学思考、问题解决和情感态度等方面进行恰当地评价。
能对教师数学教学过程进行评价。
能够通过教学评价改进教学和促进学生的发展。
5.有文科数学基础知识公式大全哪本书好
1,英语和数学,提前准备预习。
2,可以买:北京教育出版社《基础知识手册》等基础性强的教辅,只用一套。不必买一大堆,只求精简实用。
3,可以提前上网看些历年高考考试卷和高考考试说明大纲。提前进入应试状态。做到心中有底。
三从一大——一切从难,一切从严,一切从实战出发,大运动量训练。
4,语文和英语的语法,要掌握。主谓宾定状补,不定式,从句,直接引语和间接引语等语法主干要深入骨髓。固定词组和常用短语一定要记住,生词可以每天不定时反复记忆。
5,数学的公式中,除公理之外的定理,推论一定要自己推理出来。课后习题要快速正确完成。要做到知其然和知其所以然。
6,高考的题目源于教材,难于教材,百分七十以上是基础题和中等题,教材是重中之重。
7,中学英语和数学是大多数实用性强难度大专业的重要基础课,对以后选择专业至关重要。是起到战略核心作用的学科。
记住一句:万变不如其宗,先整理好考试大纲,制定可行的目标,用田忌赛马的方法对付考试,先吃肉再啃骨头。平时可以多看一下巨鹿之战或萨尔浒之战,凭他几路来,我只一路去。这样才可将注意力集中。
心静不下来,一种方法:参考一下西楚霸王项羽,破釜沉舟,九战九捷。俘杀四十万秦军。
武圣义绝关羽,温酒斩华雄,斩颜良,诛文丑。过五关斩六将。把考试当成一场战争来对待。
用气势带替心浮气燥。
6.求初一数学基本知识,公式大全
初一数学公式:乘法与因式分解 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2) 三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a| ——————————————————————————– 初一数学公式:一元二次方程的解 根与系数的关系 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a X1+X2=-b/a X1*X2=c/a 注:韦达定理 ——————————————————————————– 初一数学公式:判别式 b2-4ac=0 注:方程有两个相等的实根 b2-4ac>0 注:方程有两个不等的实根 b2-4ac0 抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py 直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c’*h 正棱锥侧面积 S=1/2c*h’ 正棱台侧面积 S=1/2(c+c’)h’ 圆台侧面积 S=1/2(c+c’)l=pi(R+r)l 球的表面积 S=4pi*r2 圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l 弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r 锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h 斜棱柱体积 V=S’L 注:其中,S’是直截面面积, L是侧棱长 。