大数据技术与应用的专业知识点

1.大数据技术与应用是什么,具体是做什么的,就业前景如何

大数据专业都采用的校企合作专业共建的形式办学,并且由于是新兴前沿专业,更加注重对技能的要求和掌握。培养具有大数据思维、运用大数据思维及分析应用技术的高层次大数据人才。大数据技术的意义不在于掌握庞大的数据信息。

1、掌握计算机理论和大数据处理技术;

2、具有良好的数学基础和逻辑思维能力;

3、具备一定的大数据科学研究能力及数据工程师岗位的基本能力与素质;

4、掌握大数据工程项目的规划、应用和科学管理决策方法;

2.大数据技术与应用就业方向

首先,必须要肯定的一点是:大数据技术与应用专业或相关专业就业前景相当广阔。

原因是:近几年来,互联网行业发展风起云涌,而移动互联网、电子商务、物联网以及社交媒体的快速发展更促使我们快速进入了大数据时代。截止到目前,人们日常生活中的数据量已经从TB(1024GB=1TB)级别一跃升到PB(1024TB=1PB)、EB(1024PB=1EB)乃至ZB(1024EB=1ZB)级别,数据将逐渐成为重要的生产因素,人们对于海量数据的运用将预示着新一波生产率增长和消费者盈余浪潮的到来。

大数据时代,专业的大数据人才必将成为人才市场上的香饽饽。因此,当下大数据从业人员的两个主要趋势是:1、大数据领域从业人员的薪资将继续增长;2、大数据人才供不应求。

另外,大数据专业毕业生就业岗位非常多,比如:Java大数据分布式程序开发、大数据集成平台的应用与开发、大数据平台运维、Java海量数据分布式编程、大数据架构设计、大数据分析、Java大数据分布式开发、基于大数据平台的程序开发、数据可视化、大数据挖掘、Java海量数据分布式编程、大数据架构设计等。

3.大数据专业主要学什么课程

大数据技术专业属于交叉学科:以统计学、数学、计算机为三大支撑性学科;生物、医学、环境科学、经济学、社会学、管理学为应用拓展性学科。

此外还需学习数据采集、分析、处理软件,学习数学建模软件及计算机编程语言等,知识结构是二专多能复合的跨界人才(有专业知识、有数据思维)。

以中国人民大学为例:

基础课程:数学分析、高等代数、普通物理数学与信息科学概论、数据结构、数据科学导论、程序设计导论、程序设计实践。

必修课:离散数学、概率与统计、算法分析与设计、数据计算智能、数据库系统概论、计算机系统基础、并行体系结构与编程、非结构化大数据分析。

选修课:数据科学算法导论、数据科学专题、数据科学实践、互联网实用开发技术、抽样技术、统计学习、回归分析、随机过程。

扩展资料:

大数据岗位7a686964616f31333431346362:

1、大数据系统架构师

大数据平台搭建、系统设计、基础设施。

技能:计算机体系结构、网络架构、编程范式、文件系统、分布并行处理等。

2、大数据系统分析师

面向实际行业领域,利用大数据技术进行数据安全生命周期管理、分析和应用。

技能:人工智能、机器学习、数理统计、矩阵计算、优化方法。

3、hadoop开发工程师。

解决大数据存储问题。

4、数据分析师

不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。在工作中通过运用工具,提取、分析、呈现数据,实现数据的商业意义。

5、数据挖掘工程师

做数据挖掘要从海量数据中发现规律,这就需要一定的数学知识,最基本的比如线性代数、高等代数、凸优化、概率论等。经常会用到的语言包括Python、Java、C或者C++,我自己用Python或者Java比较多。有时用MapReduce写程序,再用Hadoop或者Hyp来处理数据,如果用Python的话会和Spark相结合。

参考资料来源:中国人民大学信息学院-数据科学与大数据技术

参考资料来源:百度百科-大数据采集与管理专业

4.大数据技术与应用专业好不好,哪些大学比较好呢

大数据技术与应用专业,属于前沿科技专业。目前已经有不少学校开设了这个专业,但大都采用的是校企合作的方式办学,优势在于能够利用企业和高校的双师资为学生提供理论与实践相结合的教学指导,企业师资的加入弥补了高校教师对行业动态了解不及时、不全面的不足。该专业将大数据分析挖掘与处理、移动开发与架构、软件开发、云计算等前沿技术相结合,同时引入企业真实项目演练,依托产学界的雄厚师资,旨在培养适应新形势,具有最新思维和技能的”高层次、实用型、国际化”的复合型大数据专业人才。

目前,北京航空航天大学、贵州大学、对外经济贸易大学、华南理工大学、广东开放大学、宜春学院等都相继开设了大数据技术与应用专业,而这些学校也都是目前为止全国高校中大数据技术与应用专业比较牛的几所高校。

5.大数据技术与应用专业就业前景怎么样

大数据技术与应用专业或相关专业就业前景相当广阔。

近几年来,互联网行业发展风起云涌,而移动互联网、电子商务、物联网以及社交媒体的快速发展更促使我们快速进入了大数据时代。截止到目前,人们日常生活中的数据量已经从TB(1024GB=1TB)级别一跃升到PB(1024TB=1PB)、EB(1024PB=1EB)乃至ZB(1024EB=1ZB)级别,数据将逐渐成为重要的生产因素,人们对于海量数据的运用将预示着新一波生产率增长和消费者盈余浪潮的到来。大数据时代,专业的大数据人才必将成为人才市场上的香饽饽。

因此,当下大数据从业人员的两个主要趋势是:

1. 大数据领域从业人员的薪资将继续增长

2. 大数据人才供不应求。

另外,大数据专业毕业生就业岗位非常多,比如:Java大数据分布式程序开发、大数据集成平台的应用与开发、大数据平台运维、Java海量数据分布式编程、大数据架构设计、大数据分析、Java大数据分布式开发、基于大数据平台的程序开发、数据可视化、大数据挖掘、Java海量数据分布式编程、大数据架构设计等。

大数据:

1、数据分析成为大数据技术的核心 数据分析在数据处理过程中占据十分重要的位置,随着时代的发展,数据分析也会逐渐成为大数据技术的核心。大数据的价值体现在对大规模数据集合的智能处理方面,进而在大规模的数据中获取有用的信息。

2、广泛采用实时性的数据处理方式 在现如今人们的生活中,人们获取信息的速度较快。为了更好地满足人们的需求,大数据处理系统的处理方式也需要不断地与时俱进。目前大数据的处理系统采用的主要是批量化的处理方式,这种数据处理方式有一定的局限性,主要是用于数据报告的频率不需要达到分钟级别的场合,而对于要求比较高的场合,这种数据处理方式就达不到要求。传统的数据仓库系统、链路挖掘等应用对数据处理的时间往往以小时或者天为单位。

3、基于云的数据分析平台将更加完善 近几年来,云计算技术发展的越来越快,与此相应的应用范围也越来越宽。云计算的发展为大数据技术的发展提供了一定的数据处理平台和技术支持。云计算为大数据提供了分布式的计算方法、可以弹性扩展、相对便宜的存储空间和计算资源,这些都是大数据技术发展中十分重要的组成部分。

4、开源软件的发展将会成为推动大数据技术发展的新动力 开源软件是在大数据技术发展的过程中不断研发出来的。这些开源软件对各个领域的发展、人们的日常生活具有十分重要的作用。开源软件的发展可以适当的促进商业软件的发展,以此作为推动力,从而更好地服务于应用程序开发工具、应用、服务等各个不同的领域。

erp系统是什么意思啊

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注