小学数学学科专业知识考点

1.小学数学重点知识整理

小学毕业班总复习概念整理

一、整数和小数

1.最小的一位数是1,最小的自然数是0

2.小数的意义:把整数“1”平均分成10份、100份、1000份……这样的一份或几份分别是十分之几、百分之几、千分之几……可以用小数来表示。

3.小数点左边是整数部分,小数点右边是小数部分,依次是十分位、百分位、千分位……

4.小数的分类:

有限小数

小数 无限循环小数

无限小数 无限不循环小数

5.整数和小数都是按照十进制计数法写出的数。

6.小数的性质:小数的末尾添上0或者去掉0,小数的大小不变。

7.小数点向右移动一位、二位、三位……原来的数分别扩大10倍、100倍、1000倍……

小数点向左移动一位、二位、三位……原来的数分别缩小10倍、100倍、1000倍……

二、数的整除

1.整除:整数a除以整数b(b≠0),除得的商正好是整数而且没有余数,我们就说a能被b整除,或者说b能整除a。

2.约数、倍数:如果数a能被数b整除,a就叫做b的倍数,b就叫做a的约数。

3.一个数倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。

一个数约数的个数是有限的,最小的约数是1,最大的约数是它本身。

4.按能否被2整除,非0的自然数分成偶数和奇数两类,能被2整除的数叫做偶数,不能被2整除的数叫做奇数。

5.按一个数约数的个数,非0自然数可分为1、质数、合数三类。

质数:一个数,如果只有1和它本身两个约数,这样的数叫做质数。

质数都有2个约数。

合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。

合数至少有3个约数。

最小的质数是2,最小的合数是4

1~20以内的质数有:2、3、5、7、11、13、17、19

1~20以内的合数有:4、6、8、9、10、12、14、15、16、18

6.能被2整除的数的特征:个位上是0、2、4、6、8的数,都能被2整除。

能被5整除的数的特征:个位上是0或者5的数,都能被5整除。

能被3整除的数的特征:一个数的各位上数的和能被3整除,这个数就能被3整除。

7.质因数:如果一个自然数的因数是质数,这个因数就叫做这个自然数的质因数。

8.分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

9.公约数、公倍数:几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。

几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。

10.一般关系的两个数的最大公约数、最小公倍数用短除法来求;互质关系的两个数最大公约数是1,最小公倍数是两数之积;倍数关系的两个数的最大公约数是小数,最小公倍数是大数。

11.互质数:公约数只有1的两个数叫做互质数。

12.两数之积等于最小公倍数和最大公约数的积。

2.小学数学所有知识点归纳

一、植树问题 1 非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距*(株数-1) 株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距 全长=株距*株数 株距=全长÷株数 ⑶如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1 全长=株距*(株数+1) 株距=全长÷(株数+1) 2 封闭线路上的植树问题的数量关系如下 株数=段数=全长÷株距 全长=株距*株数 株距=全长÷株数二、置换问题:题中有二个未知数,常常把其中一个未知数暂时当作另一个未知数,然后根据已知条件进行假设性的运算。

其结果往往与条件不符合,再加以适当的调整,从而求出结果。 例:一个集邮爱好者买了10分和20分的邮票共100张,总值18元8角。

这个集邮爱好者买这两种邮票各多少张? 分析:先假定买来的100张邮票全部是20分一张的,那么总值应是20*100=2000(分),比原来的总值多2000-1880=120(分)。而这个多的120分,是把10分一张的看作是20分一张的,每张多算20-10=10(分),如此可以求出10分一张的有多少张。

列式:(2000-1880)÷(20-10) =120÷10 =12(张)→10分一张的张数 100-12=88(张)→20分一张的张数或是先求出20分一张的张数,再求出10分一张的张数,方法同上,注意总值比原来的总值少。 三、盈亏问题(盈不足问题):题目中往往有两种分配方案,每种分配方案的结果会出现多(盈)或少(亏)的情况,通常把这类问题,叫做盈亏问题(也叫做盈不足问题)。

解答这类问题时,应该先将两种分配方案进行比较,求出由于每份数的变化所引起的余数的变化,从中求出参加分配的总份数,然后根据题意,求出被分配物品的数量。其计算方法是:当一次有余数,另一次不足时: 每份数=(余数+不足数)÷两次每份数的差 当两次都有余数时: 总份数=(较大余数-较小数)÷两次每份数的差 当两次都不足时: 总份数=(较大不足数-较小不足数)÷两次每份数的差 例1、解放军某部的一个班,参加植树造林活动。

如果每人栽5棵树苗,还剩下14棵树苗;如果每人栽7棵,就差4棵树苗。求这个班有多少人?一共有多少棵树苗 分析:由条件可知,这道题属第一种情况。

列式:(14+4)÷(7-5) =18÷2 = 9(人) 5*9+14 =45+14 =59(棵) 或:7*9-4 =63-4 =59(棵) 答:这个班有9人,一共有树苗59棵。 例2、学校把一些彩色铅笔分给美术组的同学,如果每人分给五枝,则剩下45枝,如果每人分给7枝,则剩下3枝。

求美术组有多少同学?彩色铅笔共有几枝? (45—3)÷(7-5)=21(人) 21*5+45=150(枝)答:略。四、年龄问题:年龄问题的主要特点是两人的年龄差不变,而倍数差却发生变化。

常用的计算公式是: 成倍时小的年龄=大小年龄之差÷(倍数-1) 几年前的年龄=小的现年-成倍数时小的年龄 几年后的年龄=成倍时小的年龄-小的现在年龄 例父亲今年54岁,儿子今年12岁。几年后父亲的年龄是儿子年龄的4倍? (54-12)÷(4-1) =42÷3 =14(岁)→儿子几年后的年龄 14-12=2(年)→2年后 答:2年后父亲的年龄是儿子的4倍。

例2、父亲今年的年龄是54岁,儿子今年有12岁。几年前父亲的年龄是儿子年龄的7倍? (54-12)÷(7-1) =42÷6=7(岁)→儿子几年前的年龄 12-7=5(年)→5年前 答:5年前父亲的年龄是儿子的7倍。

例3、王刚父母今年的年龄和是148岁,父亲年龄的3倍与母亲年龄的差比年龄和多4岁。王刚父母亲今年的年龄各是多少岁? (148*2+4)÷(3+1) =300÷4 =75(岁)→父亲的年龄 148-75=73(岁)→母亲的年龄 答:王刚的父亲今年75岁,母亲今年73岁。

或:(148+2)÷2 =150÷2 =75(岁) 75-2=73(岁) 五、鸡兔同笼问题:已知鸡兔的总只数和总足数,求鸡兔各有多少只的一类应用题,叫做鸡兔问题,也叫“龟鹤问题”、“置换问题”。 一般先假设都是鸡(或兔),然后以兔(或鸡)置换鸡(或兔)。

常用的基本公式有: (总足数-鸡足数*总只数)÷每只鸡兔足数的差=兔数 (兔足数*总只数-总足数)÷每只鸡兔足数的差=鸡数 例:鸡兔同笼共有24只。有64条腿。

求笼中的鸡和兔各有多少只? (64-2*24)÷(4-2) =(64-48)÷(4-2)=16 ÷2 =8(只)→兔的只数 24-8=16(只)→鸡的只数 答:笼中的兔有8只,鸡有16只。 六、牛吃草问题(船漏水问题):若干头牛在一片有限范围内的草地上吃草。

牛一边吃草,草地上一边长草。当增加(或减少)牛的数量时,这片草地上的草经过多少时间就刚好吃完呢? 例1、一片草地,可供15头牛吃10天,而供25头牛吃,可吃5天。

如果青草每天生长速度一样,那么这片草地若供10头牛吃,可以吃几天? 分析:一般把1头牛每天的吃草量看作每份数,那么15头牛吃10天,其中就有草地上原有的草,加上这片草地10天长出草,以下类推……其中可以发现25头牛5天的吃草量比15头牛10天的吃草量要少。原因是因为其一,用的时间少;其二,对应的长出来的草也少。

这个差就是这片草地5天长出来的草。每天长出来的草可供5头牛吃一天。

如此当供。

3.小学数学教师的专业知识都有哪些内容

1. 简述什么是教师的自我反思?. 自我反思是教师对教育教学过程的再认识、再思考、再探索、再创造。

是在新课程理念指导下,以教育教学活动过程为思考对象,对教学行为、教学决策以及由此所产生的教学结果进行审视和分析的过程,是一种通过提高参与者的自我觉察水平来促进自身专业素质的提高、促进能力发展的一种批判性思维活动。 2.在学生数学学习评价中,定性评价和定量评价应体现哪些原则?互动性原则、多样性原则、激励性原则。

3.课堂教学要素评价法中确定的评价要素有哪些? 课堂教学要素评价法中确定的评价要素有教学目标、教学内容、教学方法、教学手段、师生行为、教学艺术、教学效果。 5.简述发展性教师评价的主要思路。

评价内容多元化、评价主体互动化、评价策略多样化、评价标准个性化。 6. 数学学习评价的价值取向是什么? 数学学习评价应促进学生发展;数学学习评价要体现多元化;数学学习评价要关注学生的差异。

7.反思型教师的优点有哪些? ①对教育教学理论与实践持有“健康”的怀疑;②有开放的心态,易于接受新思想;③经常对教育教学活动进行思考,善于调整和改变策略与方法;.④教育教学中,既关注结果,更关注过程,经常进行积极的反思。 8.小学数学考试命题如何体现“基础性” 在新一轮课程改革的推进过程中,有些学校在考试命题时,出现了忽视基础的倾向,这是很危险的。

我们千万不能忘记,基础性是中小学教育最重要的最本质的属性。从“人的发展”的角度,我们要多方位地、较全面地构筑“基础”的框架:1、知识与技能基础。

2、过程与方法基础。3、能力基础:具体的是收集和处理信息的能力、获取新知识的能力、分析和解决问题的能力、语言文字的表达能力(决不单单指语文学科)、团结协作能力和社会活动能力等6大能力基础。

4、情感、态度、价值观基础。 9.简述发展性学生评价的主要特征?数学学习评价应促进学生发展;数学学习评价要体现多元化;数学学习评价要关注学生的差异。

10.在新课程背景下要营造出“大气”的课堂,三个“不要”指的是情节不要太多,环节不要太细,问题不要太碎。 11.简述新课程小学数学教学评价的范畴。

答:新课程小学数学教学评价的范畴:包括教师课堂教学评价、学生数学学习评价、数学考试评价以及以自我反思为主的教师发展性评价。 12.小学数学课堂教学评价标准中的“两实”、“两气”指的是什么? 答:小学数学课堂教学评价标准中的“两实”、“两气”指的是:真实、扎实、大气、灵气。

13. 新课程小学数学教学评价有哪些具体的要求? 答:新课程小学数学教学评价的具体要求:注重对学生数学学习过程的评价;恰当评价学生基础知识和基本技能的理解和掌握;重视对学生发现问题和解决问题能力的评价;重视评价结果的处理和呈现。 16.在学生数学学习评价中,定性评价和定量评价应体现哪些原则?答:在学生数学学习评价中,定性评价和定量评价应体现的原则:互动性原则、多样性原则、激励性原则。

17.课堂教学要素评价法中确定的评价要素有哪些? 答:课堂教学要素评价法中确定的评价要素有教学目标、教学内容、教学方法、教学手段、师生行为、教学艺术、教学效果。 18.新课程下小学数学作业评价的策略有哪些? 答:新课程下小学数学作业评价的策略:分项评价,激励评价,跟踪评价,延迟评价,协商评价。

19. 小学数学教师自我反思的一般形式有哪些? 答:小学数学教师自我反思的一般形式:(1)课后备课;(2)教学后记;(3)教学诊断;(4)反思日记;(5)教学案例;(6)观摩分析。 20. 你认为实施课堂即兴评价应遵循哪些原则?答:实施课堂即兴评价应遵循的原则:立足激励原则;关注人性原则;评价方式要多样化。

21.新课程小学数学考试评价的基本原则有哪些? 答:新课程小学数学考试评价的基本原则主要有:关注学生学业的原则、发掘学生潜能的原则、满足学生需求的原则、建立学生自信的原则、推动师生发展的原则。 22.小学数学学习评价的目的是什么? 答:小学数学学习评价的目的是:1、提供反馈信息,促进学生的发展;2、收集有关资料改善教师的教学;3、对学生数学学习的成就和进步进行评价;4、改善学生对数学的态度、情感和价值观。

23. 传统小学数学考试评价存在哪些不足? 主要表现在“五个过”:评价内容过多倚重学科知识,特别是课本上的知识;评价标准过多强调共性和一般趋势;评价方法以传统的纸笔考试为主,过多地倚重量化的结果;评价主体过多地处于消极的被动地位;评价中心过于关注结果。 希望楼主能采纳我的答复。

我感激不尽。

4.小学数学的知识点都有哪些

小学数学知识点总结 常用的数量关系式 1、每份数*份数=总数 总数÷每份数=份数 总数÷份数=每份数 2、1倍数*倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 3、速度*时间=路程 路程÷速度=时间 路程÷时间=速度 4、单价*数量=总价 总价÷单价=数量 总价÷数量=单价 5、工作效率*工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 6、加数+加数=和 和-一个加数=另一个加数 7、被减数-减数=差 被减数-差=减数 差+减数=被减数 8、因数*因数=积 积÷一个因数=另一个因数 9、被除数÷除数=商 被除数÷商=除数 商*除数=被除数 小学数学图形计算公式 1、正方形 (C:周长 S:面积 a:边长 ) 周长=边长*4 C=4a 面积=边长*边长 S=a*a 2、正方体 (V:体积 a:棱长 ) 表面积=棱长*棱长*6 S表=a*a*6 体积=棱长*棱长*棱长 V=a*a*a 3、长方形( C:周长 S:面积 a:边长 ) 周长=(长+宽)*2 C=2(a+b) 面积=长*宽 S=ab 4、长方体 (V:体积 s:面积 a:长 b: 宽 h:高) (1)表面积(长*宽+长*高+宽*高)*2 S=2(ab+ah+bh) (2)体积=长*宽*高 V=abh 5、三角形 (s:面积 a:底 h:高) 面积=底*高÷2 s=ah÷2 三角形高=面积 *2÷底 三角形底=面积 *2÷高 6、平行四边形 (s:面积 a:底 h:高) 面积=底*高 s=ah 7、梯形 (s:面积 a:上底 b:下底 h:高) 面积=(上底+下底)*高÷2 s=(a+b)* h÷2 8、圆形 (S:面积 C:周长 л d=直径 r=半径) (1)周长=直径*л=2*л*半径 C=лd=2лr (2)面积=半径*半径*л 9、圆柱体 (v:体积 h:高 s:底面积 r:底面半径 c:底面周长) (1)侧面积=底面周长*高=ch(2лr或лd) (2)表面积=侧面积+底面积*2 (3)体积=底面积*高 (4)体积=侧面积÷2*半径 10、圆锥体 (v:体积 h:高 s:底面积 r:底面半径) 体积=底面积*高÷3 11、总数÷总份数=平均数 12、和差问题的公式:(和+差)÷2=大数 (和-差)÷2=小数 13、和倍问题: 和÷(倍数-1)=小数 小数*倍数=大数 (或者 和-小数=大数) 14、差倍问题: 差÷(倍数-1)=小数 小数*倍数=大数 (或 小数+差=大数) 15、相遇问题 相遇路程=速度和*相遇时间; 相遇时间=相遇路程÷速度和; 速度和=相遇路程÷相遇时间 16、浓度问题 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量*100%=浓度 溶液的重量*浓度=溶质的重量 溶质的重量÷浓度=溶液的重量 17、利润与折扣问题 利润=售出价-成本; 利润率=利润÷成本*100%=(售出价÷成本-1)*100% 涨跌金额=本金*涨跌百分比; 利息=本金*利率*时间; 税后利息=本金*利率*时间*(1-20%) 常用单位换算 长度单位换算 1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米 面积单位换算: 1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 体(容)积单位换算: 1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升 1立方厘米=1毫升 1立方米=1000升 重量单位换算: 1吨=1000 千克 1千克=1000克 1千克=1公斤 人民币单位换算: 1元=10角 1角=10分 1元=100分 时间单位换算: 1世纪=100年 1年=12月 大月(31天)有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月 平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时 1时=60分 1分=60秒 1时=3600秒 数和数的运算 一 概念 (一)整数 1、整数的意义: 自然数和0都是整数。

2、自然数: 我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。 一个物体也没有,用0表示。

0也是自然数。 3、计数单位 一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。

每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。

4、数位: 计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。 5、数的整除 整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。

如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。倍数和约数是相互依存的。

因为35能被7整除,所以35是7的倍数,7是35的约数。 一个数的约数的个数是有限的,其中最小的约数是1,最大的 约数是它本身。

例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。 一个数的倍数的个数是无限的,其中最小的倍数是它本身。

3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。 个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。

个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。

一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。

一个数各位数上的和能被9整除,这个数就能被9整除。 能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。

一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。

一个数的末三位数能被8(或125)整除,这个。

5.小学数学的知识点都有哪些

小学数学学习概述 数学学习主要是对学生数学思维能力的培养.这要以数学基础知识和基本技能为基础,以数学问题为诱因,以数学思想方法为核心,以数学活动为主线,遵循数学的内在规律和学生的思维规律开展教学.学习类型分析1.方式性分类 (1)接受学习与发现学习 定义:将学习的内容以定论的形式呈现给学习者的学习方式.模式:呈现材料—讲解分析—理解领会—反馈巩固 (2)发现学习 定义:向学习者提供一定的背景材料,由学习者独立操作而习得知识的学习方式. 模式:呈现材料—假设尝试—认知整合—反馈巩固.2.知识性分类一 (1)知识学习 定义:以理解、掌握数学基础知识为主的学习活动.过程:选择—领会—习得——巩固 (2)技能学习 定义:将一连串(内部或外部的)动作经练习而形成熟练的、自动化的反应过程.过程:演示—模仿—练习—熟练—自动化 (3)问题解决学习 以关心问题解决过程为主、反思问题解决思考过程的一种数学学习活动.提出问题—分析问题—解决问题—反思过程3.知识性分类二 (1)概念性(陈述性)知识的学习 把数学中的概念、定义、公式、法则、原理、定律、规则等都称为概念性知识.概念学习:同化与形成.利用已有概念来学习相关新概念的方式,称概念同化;依靠直接经验,从大量的具体例子出发,概括出新概念的本质属性的方式,称为概念形成.概念形成是小学生获得数学概念的主要形式.(2)技能性(程序性)知识的学习 小学数学技能主要是运算技能. 运算技能的形成分为三个阶段:①认知阶段:“引导式”的尝试错误.从老师演算例题或自学法则中初步了解运算法则,在头脑中形成运算方法的表征.②联结阶段:法则阶段,即按法则一步步地运算,保证算对(使用法则解决问题,陈述性知识提供了基本的操作线索)—程序化阶段(将相关的小法则整合为整体的法则系统,此时概念性知识已退出),能算得比较快速正确.③自动化阶段:更清楚更熟练地应用第二阶段中的程序,通过较多的练习,不再思考程序,达到一定程序的自动化,获得了运算的速度和较高的正确率.(3)问题解决(策略性知识)的学习 通过重组所掌握的数学知识,找出解决当前问题的适用策略和方法,从而获得解决问题的策略的学习.小学生解决问题的主要方式,一是尝试错误式(又称试误法),即通过进行无定向的尝试,纠正暂时性 尝试错误,直至解决问题;二是顿悟式(也称启发式),好像答案或方法是突然出现的,而实际上是有一 定的“心向”作基础的,这就是问题解决所依据的规则、原理的评价和识别.4.任务性分类 (1)记忆操作类学习 如口算、尺规作(画)图和掌握基本的运算法则并能进行准确计算等.(2)理解性的学习 如认识并掌握概念的内涵、懂得数学原理并能用于解释或说明、理解一个数学命题并能用于推得新命题.(3)探索性的学习 如需要让学生经过自己探索,发现并提出问题或学习任务,让学生通过自己的探究能总结出一个数学规律或规则,让学生通过自己的探究过程而逐步形成新的策略性知识等.小学生数学认知学习 一、小学生数学认知学习的基本特征1.生活常识是小学生数学认知的起点 要在儿童的生活常识和数学知识之间构建一座桥梁,让儿童从生活常识和经验出发,不断通过尝试、探索和反思,从而达到“普通常识”的“数学化”.2.小学生数学认知是一个主体的数学活动过程 数学认知过程要成为一个“做数学”的过程,让儿童从生活常识出发,在“做数学”的过程中,去发现、了解、体验和掌握数学,去认识数学的价值、了解数学的特性、总结数学的规律,去学会用数学、提高数学修养、发展数学能力.3.小学生数学认知思维具有直观化的特征 由于一方面儿童生活常识是其数学认知的基础,另一方面儿童思维是以直观具体形象思维为主,所以要以直观为主要手段,让儿童理解并构建起数学认知结构.4.小学生数学认知是一个“再发现”和“再创造”的过程 小学生的数学学习,主要的不是被动的接受学习,而是主动的“再发现”和“再创造”学习的过程.要让他们在数学活动或是实践中去重新发现或重新创造数学的概念、命题、法则、方法和原理.二、小学生数学认知发展的基本规律1.小学生数学概念的发展 (1)从获得并建立初级概念为主发展到逐步理解并建立二级概念 (2)从认识概念的自身属性逐步发展到理解概念间的关系 (3)数学概念的建立受经验的干扰逐渐减弱2.小学生数学技能的发展 (1)从依赖结构完满的示范导向发展到依赖对内部意义的理解 (2)从外部的展开的思维发展到内部的压缩的思维 (3)数感和符号意识的逐步提高,支持着运算向灵活性、简洁性和多样性发展3.小学生空间知觉能力的发展 (1)方位感是逐步建立的 (2)空间概念的建立逐渐从外显特征的把握发展到对本质特征的把握 (3)空间透视能力是逐步增强的 4.小学生数学问题解决能力的发展 (1)语言表述阶段 (2)理解结构阶段 (3)多级推理能力的形成 (4)符号运算阶段 小学生数学能力的培养 一、数学能力概述1.能力概述 能力是指个体能胜任某种活动所具有的心理特征2.数学能力 数学能力是顺利完成数学活动所具备的,。

6.武汉事业单位考试教师岗小学数学学科专业考试内容有哪些

您好,中公教育为您服务。

集合与简易逻辑一、集合的基本概念 二、集合间的基本关系 三、集合的运算第二节 简易逻辑 一、逻辑联结词二、命题三、命题的条件与结论间的属性 函数第一节 函数概念) 一、函数的定义 二、函数的基本性质 三、反函数和复合函数第二节 基本初等函数 一、指数函数与对数函数 二、幂函数第三节 三角函数 一、角的概念的推广、弧度制 二、任意角的三角函数 三、同角三角函数的基本关系式与诱导公式) 四、正弦函数、余弦函数、正切函数的图象与性质 五、函数y=Asin(ωx+φ)的图象与性质 六、和、差、倍、半角公式 七、正弦、余弦定理 不等式、数列与极限第一节 不等式 一、不等式的性质 二、不等式的解法 三、不等式的证明第二节 数列一、等差数列与等比数列二、线性递归数列第三节 极限一、数列的极限二、函数的极限 立体几何第一节 直线与平面一、直线二、直线与平面之间的位置关系三、平面与平面之间的位置关系四、空间距离第二节 简单几何体一、棱柱与棱锥二、圆柱与圆锥三、球四、多面体 解析几何第一节 直线与方程一、直线的方程二、两条直线的位置关系三、点与直线第二节 圆与方程一、圆的方程二、直线、圆的位置关系第三节 圆锥曲线一、圆锥曲线的概念、标准方程与几何性质二、直线与圆锥曲线的位置关系第四节 极坐标一、极坐标系二、直角坐标与极坐标的互化三、曲线的极坐标方程 向量与复数考点聚焦 考点预测 知识框架 第一节 向量一、平面向量二、空间向量第二节 复数一、复数的概念二、复数的运算三、复数的几何意义推理证明与排列组合第一节 推理与证明一、基本定义二、不等式证明方法三、数学归纳法第二节 排列、组合与二项式定理一、两个基本原理二、排列三、组合四、排列、组合的综合问题五、二项式定理第八章 统计与概率第一节 统计一、抽样二、两个变量的线性相关三、正态分布第二节 概率一、随机事件的概率二、离散型随机变量第九章 高等数学第一节 数列极限与函数极限一、极限的定义二、极限的基本性质与两个重要极限三、求极限的方法第二节 连续函数一、连续性概念二、函数连续性的判断三、函数的间断点四、连续函数的性质第三节 导数与微分一、导数的概念二、导数的应用三、微分第四节 积分一、不定积分二、定积分第五节 空间解析几何一、空间直角坐标系二、平面方程与直线方程三、平面、直线之间的相互关系与距离公式四、曲面及曲线方程第六节 行列式一、行列式的定义二、行列式的性质三、行列式的计算四、克莱姆法则第七节 线性方程组一、向量组二、线性方程组第八节 矩阵与变换一、矩阵的概念二、矩阵的运算三、矩阵的初等变换四、多角度认识线性方程组2014试题猜想第二部分小学数学课程内容第一章 数与代数第一节 数的认识和运算一、整数二、小数三、分数和百分数四、数的整除五、整数、小数、分数四则混合运算六、比和比例第二节 常见的量一、量的种类二、常用单位三、单位表四、单位间的换算五、常用计算公式表第三节 式与方程一、代数式二、简易方程第四节 数感和符号感一、数感二、如何培养学生的符号感2014试题猜想第二章 图形与几何第一节 点、线、面一、点、线、面的基本概念二、直线的基本性质第二节 特殊的平面图形一、三角形二、其他多边形第三节 平移、旋转、对称一、轴对称与轴对称图形二、中心对称与中心对称图形三、图形的平移和旋转第三章 统计与概率第一节 统计(157)一、统计方式二、统计数据的特征第二节 概率一、事件二、事件的概率三、求概率的方法第四章 应用题第一节 工程问题一、基本概念二、两个人的工程问题三、多人的工程问题四、水管问题第二节 行程问题一、基本概念二、流水问题三、相遇问题第三节 分数和百分数应用题第四节 几何形体应用题第五节 列方程解应用题第三部分小学数学课程与教学论第一章 小学数学课程与教材教法研究第一节 小学数学课程一、基本理念二、设计思路三、课程目标第二节 小学数学教材教法研究一、教材知识部分二、理论部分第三节 热点剖析一、我国小学数学教育的改革与发展二、我国小学数学双基教学的实践与发展三、小学数学教育的国际视野四、国外数学教育的主要理论五、21世纪初我国的小学数学课程改革六、小学数学教师七、小学数学教育中值得关注的问题第二章 数学教学设计及案例分析第一节 小学数学教学设计概述一、数学教学设计的内涵二、数学教学设计的意义第二节 小学数学教学设计的基本内容一、教材分析二、学情分析三、教学目标的制定四、教学方法的选用五、教学媒体的使用六、教学实施过程分析七、教学反思八、教学设计的撰写第三节 数学教学的案例分析一、情境导入的案例分析二、课堂教学的案例分析第三章 数学教学的评价第一节 评价概述一、数学教育评价的功能二、数学教育评价的类型第二节 数学课堂教学评价一、数学课堂教学评价要素二、数学课堂教学评价方法第三节 学生数学学习评价一、数学学习评价概述二、数学学习评价方法如有疑问,欢迎向中公教育企业知道提问。

erp系统是什么意思啊

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注