1.如果想做一个数据分析师,需要具备什么知识
统计学知识是最基础的必要的,所以你应该首先买统计学的书回来看
其次是数据库方面的知识,一般只需要会数据库语言即可,所以还需要一本sql的书
第三是数据挖掘方面的知识,所以还需要一般数据挖掘的教材来看
最后还要会应用相应的工具,比如spss、modeler、sas、stata等相关的一款
以上是专业方面的知识
下面还有实际分析能力方面,比如市场分析的能力,需要平时多结合实际工作情况,多看一些分析报告。
2.成为一名数据分析师,需要具备哪些基本知识
一、办公软件
1) 熟练使用excel, Access,Visio等MS Office办公软件,可以制作相关的原型; (MS即microsoft微软,MS Office 是微软提供的系列软件,Word, Excel, PowerPoint, Access, OutLook,Publisher,InfoPath这7个办公软件中,常用的是前4个。) 2) 重点掌握EXCEL表,会使用高级功能,能快速制作报表,熟练使用EXCEL VBA;
二、数据分析软件及方法
1)熟练使用各种数理统计、数据分析、数据挖掘工具软件,熟悉各种网站分析软件的应用,如Google Analytics 、百度统计、Omniture等;
2)具备相关数据分析软件的使用经验SPSS\SAS\EVIEW\STATA\R\Weka……
3)至少精通使用IBM Intelligent Miner、SAS Enterprise Miner、SPSS Clementine、LEVEL5Quest、SGI、WinRosa、ExcelVBA、S-plus、Matlab、SSIS等等常见数据挖掘软件中的一个进行数据挖掘的 开发工作;
4)熟练使用至少一种网站流量分析工具(Google Analytics、Webtrends、百度统计等),并掌握分析工具的部署、配置优化和权限管理;
5)精通一种或多种数据挖掘算法(如聚类、回归、决策树等); 6)熟悉维基编辑者优先; 7)使用软件的要求;
(7.1)掌握数据分析、挖掘方法,具备使用Excel、SQL、SPSS/SAS、Powerpoint等工具处理和分析较大量级数据的能力;
(7.2)能够综合使用各种数理统计、数据分析、制表绘图等软件进行图表、图像以及文字处理;
(7.3)掌握常用的数据统计、分析方法,有敏锐的洞察力和数据感觉,优秀的数据分析能力;
(7.4)能够综合使用各种数理统计、数据分析、数据挖掘、制表绘图等软件进行具有基本数据美感的图表、图像以及文字处理 。
三、数据库语言
1)熟悉Linux操作系统及至少一种脚本语言(Shell/Perl/Python);
2)熟练掌握C/C++/Java中的一种,有分布式平台(如Hadoop)开发经验者优先; 3)熟悉数据库原理及SQL基本操作;
(3.1)了解Mysql,postgresql,sql server等数据库原理,熟悉SQL,具备很强的学习能力,写过程序,会perl,python等脚本语言者优先; (3.2)熟练应用mysql的select,update等sql语句; 4)熟悉sql server或其他主流数据库,熟悉olap原理; 5)熟悉Oracle或其他大型数据库。
四、思维能力等方面
1)具备良好的行业分析、判断能力、及文字表达能力;
2)沟通、协调能力强,有较高的数据敏感性及分析报告写作能力; 3)理解网站运营的常识,能从问题中引申出解决方案,提供设计改进建议;
4)具有良好经济学、统计学及相关领域的理论基础,熟悉数理统计、数据分析或市场研究的工作方法,具有较强的数据分析能力;
5)熟悉数据分析与数理统计理论,具有相关课程研修经历。
五、其他要求
1)较强的英文听说读写能力,英语6级以上;
2)文笔良好;
3)了解seo,sem优先;
4)知识要求:同时具备统计学、数据库、经济学三个领域的基础知识;英语四级或以上、熟悉指标英文名称;具备互联网产品设计知识;
5)具有深厚的数据分析、数据挖掘理论知识,深入了解相关技术;能熟练使用至少一种统计分析或数据挖掘工具。
3.数据分析师应具备哪些专业态度
态度一:避免从众心理
数据分析的过程中,从众心理也常常作祟,影响分析结果的有效性。例如,在焦点小组座谈会上,若主持人引导不力,受访者不敢或不愿发表自己的看法,可能就会出现一言堂的局面。再比如,使用德尔菲法时,若设计者没有坚持背靠背原则,参与的专家可能会因群体压力或迷信权威而放弃思考和坚持。再比如企业,在自身基础数据储量还未达到大数据量级别时,就随波逐流,推崇大数据技术,脱离实际。因此,数据分析工作同样要理性决策,避免从众心理。
态度二:避免偏见
很多时候,我们会仅凭过去的知识、经验做判断,于是偏见和思维定势代替了事情的本来面目。在数据分析中也不乏偏见和思维定势的现象,此可谓思维上的懈怠和懒惰。例如,在分析市场机会时,只看需求量不看供给量。或在评估是否要上项目时,一些分析师只看项目本身的收益,却不考虑市场的竞争和自身的实力。而这种思维定势往往给企业造成重大损失。例如,不看市场的供给可能会造成重复建设、恶性竞争;不看自身的实力可能会在激烈的竞争中败下阵来。
态度三:合理怀疑
在数据分析方面,秉承合理怀疑的态度也至关重要!所以在做数据分析时,要合理怀疑,通过假设检验等方法,核实自己的分析结论有多大的可信度。有时候,分析也会出问题,比如样本不具有代表性,或因为主观的原因而不自主的选择数据,造成分析偏差,企业在使用分析结论时,也要合理怀疑。很多数据分析结论是静态的展示,并不能从背后的数据来源做审视。
态度四:换位思考
数据分析工作也要学会换位思考,从多角度看待数据和使用数据。例如,为什么要将第三方监测数据和企业内部数据搭配使用?因为企业内部数据准确反映了企业自身的运营情况,但却缺少对竞争对手的考量,因此无法对整个行业进行全局性把握;而第三方监测数据则是全局性的,又有企业自身的数据,也有企业的竞争对手的数据,能够做全行业的规模、竞争和用户分析。但是,第三方监测数据多采用抽样的方式,存在着总体代表性的问题。因此 ,这两方面的数据需要相互印证、搭配使用。
4.大数据分析师 应该要学什么知识
大数据分析师应该要学的知识有,统计概率理论基础,软件操作结合分析模型进行实际运用,数据挖掘或者数据分析方向性选择,数据分析业务应用。
1、统计概率理论基础
这是重中之重,千里之台,起于垒土,最重要的就是最下面的那几层。统计思维,统计方法,这里首先是市场调研数据的获取与整理,然后是最简单的描述性分析,其次是常用的推断性分析,方差分析,到高级的相关,回归等多元统计分析,掌握了这些原理,才能进行下一步。
2、软件操作结合分析模型进行实际运用
关于数据分析主流软件有(从上手度从易到难):Excel,SPSS,Stata,R,SAS等。首先是学会怎样操作这些软件,然后是利用软件从数据的清洗开始一步步进行处理,分析,最后输出结果,检验及解读数据。
3、数据挖掘或者数据分析方向性选择
其实数据分析也包含数据挖掘,但在工作中做到后面会细分到分析方向和挖掘方向,两者已有区别,关于数据挖掘也涉及到许多模型算法,如:关联法则、神经网络、决策树、遗传算法、可视技术等。
4、数据分析业务应用
这一步也是最难学习的一步,行业有别,业务不同,业务的不同所运用的分析方法亦有区分,实际工作是解决业务问题,因此对业务的洞察能力非常重要。
扩展资料
分析工作内容
1、搜索引擎分析师(Search Engine Optimization Strategy Analyst,简称SEO分析师)是一项新兴信息技术职业,主要关注搜索引擎动态,修建网站,拓展网络营销渠道,网站内部优化,流量数据分析,策划外链执行方案,负责竞价推广。
2、SEO分析师需要精通商业搜索引擎相关知识与市场运作。通过编程,HTML,CSS,JavaScript,MicrosoftASP.NET,Perl,PHP,Python等建立网站进行各种以用户体验为主同时带给公司盈利但可能失败的项目尝试。
参考资料来源:百度百科-大数据分析师
5.想要做数据分析师应选择什么专业
一、掌握基础、更新知识。
基本技术怎么强调都不过分。这里的术更多是(计算机、统计知识), 多年做数据分析、数据挖掘的经历来看、以及业界朋友的交流来看,这点大家深有感触的。
数据库查询—SQL 数据分析师在计算机的层面的技能要求较低,主要是会SQL,因为这里解决一个数据提取的问题。有机会可以去逛逛一些专业的数据论坛,学习一些SQL技巧、新的函数,对你工作效率的提高是很有帮助的。
统计知识与数据挖掘 你要掌握基础的、成熟的数据建模方法、数据挖掘方法。例如:多元统计:回归分析、因子分析、离散等,数据挖掘中的:决策树、聚类、关联规则、神经网络等。
但是还是应该关注一些博客、论坛中大家对于最新方法的介绍,或者是对老方法的新运用,不断更新自己知识,才能跟上时代,也许你工作中根本不会用到,但是未来呢?行业知识 如果数据不结合具体的行业、业务知识,数据就是一堆数字,不代表任何东西。是冷冰冰,是不会产生任何价值的,数据驱动营销、提高科学决策一切都是空的。
一名数据分析师,一定要对所在行业知识、业务知识有深入的了解。例如:看到某个数据,你首先必须要知道,这个数据的统计口径是什么?是如何取出来的?这个数据在这个行业, 在相应的业务是在哪个环节是产生的?数值的代表业务发生了什么(背景是什么)?对于A部门来说,本月新会员有10万,10万好还是不好呢?先问问上面的这个问题:对于A部门,1、新会员的统计口径是什么。
第一次在使用A部门的产品的会员?还是在站在公司角度上说,第一次在公司发展业务接触的会员?2、是如何统计出来的。A:时间;是通过创建时间,还是业务完成时间。
B:业务场景。是只要与业务发接触,例如下了单,还是要业务完成后,到成功支付。
3、这个数据是在哪个环节统计出来。在注册环节,在下单环节,在成功支付环节。
4、这个数据代表着什么。10万高吗?与历史相同比较?是否做了营销活动?这个行业处理行业生命同期哪个阶段?在前面二点,更多要求你能按业务逻辑,来进行数据的提取(更多是写SQL代码从数据库取出数据)。
后面二点,更重要是对业务了解,更行业知识了解,你才能进行相应的数据解读,才能让数据产生真正的价值,不是吗?对于新进入数据行业或者刚进入数据行业的朋友来说:行业知识都重要,也许你看到很多的数据行业的同仁,在微博或者写文章说,数据分析思想、行业知识、业务知识很重要。我非常同意。
因为作为数据分析师,在发表任何观点的时候,都不要忘记你居于的背景是什么?但大家一定不要忘记了一些基本的技术,不要把基础去忘记了,如果一名数据分析师不会写SQL,那麻烦就大了。哈哈。
你只有把数据先取对了,才能正确的分析,否则一切都是错误了,甚至会导致致命的结论。
新同学,还是好好花时间把基础技能学好。因为基础技能你可以在短期内快速提高,但是在行业、业务知识的是一点一滴的积累起来的,有时候是急不来的,这更需要花时间慢慢去沉淀下来。
不要过于追求很高级、高深的统计方法,我提倡有空还是要多去学习基本的统计学知识,从而提高工作效率,达到事半功倍。以我经验来说,我负责任告诉新进的同学,永远不要忘记基本知识、基本技能的学习。
二、要有三心。1、细心。
2、耐心。3、静心。
数据分析师其实是一个细活,特别是在前文提到的例子中的前面二点。而且在数据分析过程中,是一个不断循环迭代的过程,所以一定在耐心,不怕麻烦,能静下心来不断去修改自己的分析思路。
三、形成自己结构化的思维。数据分析师一定要严谨。
而严谨一定要很强的结构化思维,如何提高结构化思维,也许只需要工作队中不断的实践。但是我推荐你用mindmanagement,首先把你的整个思路整理出来,然后根据分析不断深入、得到的信息不断增加的情况下去完善你的结构,慢慢你会形成一套自己的思想。
当然有空的时候去看看《麦肯锡思维》、结构化逻辑思维训练的书也不错。在我以为多看看你身边更资深同事的报告,多问问他们是怎么去考虑这个问题的,别人的思想是怎么样的?他是怎么构建整个分析体系的。
四、业务、行业、商业知识。当你掌握好前面的基本知识和一些技巧性东西的时候,你应该在业务、行业、商业知识的学习与积累上了。
这个放在最后,不是不重要,而且非常重要,如果前面三点是决定你能否进入这个行业,那么这则是你进入这个行业后,能否成功的最根本的因素。 数据与具体行业知识的关系,比作池塘中鱼与水的关系一点都不过分,数据(鱼)离开了行业、业务背景(水)是死的,是不可能是“活”。
而没有“鱼”的水,更像是“死”水,你去根本不知道看什么(方向在哪)。如何提高业务知识,特别是没有相关背景的同学。
很简单,我总结了几点:1、多向业务部门的同事请教,多沟通。多向他们请教,数据分析师与业务部门没有利益冲突,而更向是共生体,所以如果你态度好,相信业务部门的同事也很愿意把他们知道的告诉你。
2、永远不要忘记了google大神,定制一些行业的关键字,每天都先看看定制的邮件。3、每天有空去浏。
6.数据分析员需要掌握哪些知识
问题描述:我是一名应届毕业生 专业是统计学 目前准备在一家单
答案1::去了就知道了。主要是他们主营业务和平台。需要分析的是
mathematics,sas,matlab,excel。
一般的分析就是excel就够了
如果数据库用的多,就学学数据库,简单的SQL,然后就是结合软件用
用,就可以了
具体还要细化的技术要实习了才能知道
最最关键的,是要对业务有理解~
:::::::::::::::::::请参考以下相关问题::::::::::::::::::::
:::::::::::::::::::请参考以下相关问题::::::::::::::::::::
:::::::::::::::::::请参考以下相关问题::::::::::::::::::::
:::::::::::::::::::请参考以下相关问题:::::::::::::::::::::::::::::::::::::::请参考以下相关问题::::::::::::::::::::数据分析员
7.做一名数据分析师要具备什么能力
技能一:理解数据库。
还以为要与文本数据打交道吗?答案是:NO!进入了这个领域,你会发现几乎一切都是用数据库来存储数据,如MySQL,PostgreSQL,CouchDB,MongoDB,Cassandra等。理解数据库并且能熟练使用它,将是一个基础能力。
技能二:掌握数据整理、可视化和报表制作。
数据整理,是将原始数据转换成方便实用的格式,实用工具有DataWrangler和R。数据可视化,是创建和研究数据的视觉表现,实用工具有ggvis,D3,vega。数据报表是将数据分析和结果制作成报告。也是数据分析师的一个后续工作。这项技能是做数据分析师的主要技能。可以借助新型软件帮助自己迅速学会分析。如大数据魔镜可视化分析软件(“魔镜”)既可以满足企业需求,也可以适应个人需要,是进行数据分析的一个新型而精准的产品。
技能三:懂设计
说到能制作报表成果,就不得不说说图表的设计。在运用图表表达数据分析师的观点时,懂不懂设计直接影响到图形的选择、版式的设计、颜色的搭配等,只有掌握设计原则才能让结果一目了然。否则图表杂乱无章,数据分析内容不能良好地呈现出来,分析结果就不能有效地传达。
技能四:几项专业技能
统计学技能——统计学是数据分析的基础,掌握统计学的基本知识是数据分析师的基本功。从数据采集、抽样到具体分析时的验证探索和预测都要用到统计学。
社会学技能——从社会化角度看,人有社会性,收群体心理的影响。数据分析师没有社会学基本技能,很难对市场现象做出合理解释。
另外,最好还能懂得财务管理知识和心理学概况。这些都将会使你做数据分析的过程更容易。
技能五:提升个人能力。
有了产品可以将数据展示出来,还需要具备基本的分析师能力。首先,要了解模型背后的逻辑,不能单纯地在模型中看,而要放到整个项目的上下文中去看。要理解数据的信息,形成一个整体系统,这样才能够做好细节。另外,与数据打交道,细心和耐心也是必不可少的。
技能六:随时贴近数据文化
拥有了数据分析的基本能力,还怕不够专业?不如让自己的生活中充满数据分析的气氛吧!试着多去数据分析的论坛看看,多浏览大数据知识的网站,让自己无时无刻不在进步,还怕不能学会数据分析吗?
拥有这些技能,再去做数据分析,数据将在你手里变得更亲切,做数据分析也会更简单更便捷,速成数据分析师不再遥远。
8.数据分析员属于什么专业
一般从事数据分析员的人都是统计学或数学专业的人。
数据分析师职位要求 :
1、计算机、统计学、数学等相关专业本科及以上学历;
2、具有深厚的统计学、数据挖掘知识,熟悉数据仓库和数据挖掘的相关技术,能够熟练地使用SQL;
3、三年以上具有海量数据挖掘、分析相关项目实施的工作经验,参与过较完整的数据采集、整理、分析和建模工作;
4、对商业和业务逻辑敏感,熟悉传统行业数据挖掘背景、了解市场特点及用户需求,有互联网相关行业背景,有网站用户行为研究和文本挖掘经验尤佳;
5、具备良好的逻辑分析能力、组织沟通能力和团队精神;
6、富有创新精神,充满激情,乐于接受挑战。