1.小学数学知识的相关基础理论知识有哪些
小学数学学习概述数学学习主要是对学生数学思维能力的培养。
这要以数学基础知识和基本技能为基础,以数学问题为诱因,以数学思想方法为核心,以数学活动为主线,遵循数学的内在规律和学生的思维规律开展教学。学习类型分析 1.方式性分类(1)接受学习与发现学习定义:将学习的内容以定论的形式呈现给学习者的学习方式。
模式:呈现材料—讲解分析—理解领会—反馈巩固(2)发现学习 定义:向学习者提供一定的背景材料,由学习者独立操作而习得知识的学习方式。 模式:呈现材料—假设尝试—认知整合—反馈巩固。
2.知识性分类一(1)知识学习 定义:以理解、掌握数学基础知识为主的学习活动。过程:选择—领会—习得——巩固(2)技能学习定义:将一连串(内部或外部的)动作经练习而形成熟练的、自动化的反应过程。
过程:演示—模仿—练习—熟练—自动化(3)问题解决学习 以关心问题解决过程为主、反思问题解决思考过程的一种数学学习活动。提出问题—分析问题—解决问题—反思过程3.知识性分类二(1)概念性(陈述性)知识的学习 把数学中的概念、定义、公式、法则、原理、定律、规则等都称为概念性知识。
概念学习:同化与形成。 利用已有概念来学习相关新概念的方式,称概念同化;依靠直接经验,从大量的具体例子出发,概括出新概念的本质属性的方式,称为概念形成。
概念形成是小学生获得数学概念的主要形式。(2)技能性(程序性)知识的学习 小学数学技能主要是运算技能。
运算技能的形成分为三个阶段: ①认知阶段:“引导式”的尝试错误。从老师演算例题或自学法则中初步了解运算法则,在头脑中形成运算方法的表征。
②联结阶段:法则阶段,即按法则一步步地运算,保证算对(使用法则解决问题,陈述性知识提供了基本的操作线索)—程序化阶段(将相关的小法则整合为整体的法则系统,此时概念性知识已退出),能算得比较快速正确。③自动化阶段:更清楚更熟练地应用第二阶段中的程序,通过较多的练习,不再思考程序,达到一定程序的自动化,获得了运算的速度和较高的正确率。
(3)问题解决(策略性知识)的学习通过重组所掌握的数学知识,找出解决当前问题的适用策略和方法,从而获得解决问题的策略的学习。小学生解决问题的主要方式,一是尝试错误式(又称试误法),即通过进行无定向的尝试,纠正暂时性尝试错误,直至解决问题;二是顿悟式(也称启发式),好像答案或方法是突然出现的,而实际上是有一定的“心向”作基础的,这就是问题解决所依据的规则、原理的评价和识别。
4.任务性分类(1)记忆操作类学习如口算、尺规作(画)图和掌握基本的运算法则并能进行准确计算等。(2)理解性的学习 如认识并掌握概念的内涵、懂得数学原理并能用于解释或说明、理解一个数学命题并能用于推得新命题。
(3)探索性的学习如需要让学生经过自己探索,发现并提出问题或学习任务,让学生通过自己的探究能总结出一个数学规律或规则,让学生通过自己的探究过程而逐步形成新的策略性知识等。 小学生数学认知学习一、小学生数学认知学习的基本特征 1.生活常识是小学生数学认知的起点 要在儿童的生活常识和数学知识之间构建一座桥梁,让儿童从生活常识和经验出发,不断通过尝试、探索和反思,从而达到“普通常识”的“数学化”。
2.小学生数学认知是一个主体的数学活动过程 数学认知过程要成为一个“做数学”的过程,让儿童从生活常识出发,在“做数学”的过程中,去发现、了解、体验和掌握数学,去认识数学的价值、了解数学的特性、总结数学的规律,去学会用数学、提高数学修养、发展数学能力。3.小学生数学认知思维具有直观化的特征 由于一方面儿童生活常识是其数学认知的基础,另一方面儿童思维是以直观具体形象思维为主,所以要以直观为主要手段,让儿童理解并构建起数学认知结构。
4.小学生数学认知是一个“再发现”和“再创造”的过程 小学生的数学学习,主要的不是被动的接受学习,而是主动的“再发现”和“再创造”学习的过程。要让他们在数学活动或是实践中去重新发现或重新创造数学的概念、命题、法则、方法和原理。
二、小学生数学认知发展的基本规律 1.小学生数学概念的发展 (1)从获得并建立初级概念为主发展到逐步理解并建立二级概念 (2)从认识概念的自身属性逐步发展到理解概念间的关系 (3)数学概念的建立受经验的干扰逐渐减弱2.小学生数学技能的发展 (1)从依赖结构完满的示范导向发展到依赖对内部意义的理解 (2)从外部的展开的思维发展到内部的压缩的思维 (3)数感和符号意识的逐步提高,支持着运算向灵活性、简洁性和多样性发展3.小学生空间知觉能力的发展 (1)方位感是逐步建立的 (2)空间概念的建立逐渐从外显特征的把握发展到对本质特征的把握 (3)空间透视能力是逐步增强的 4.小学生数学问题解决能力的发展 (1)语言表述阶段 (2)理解结构阶段 (3)多级推理能力的形成 (4)符号运算阶段 小学生数学能力的培养一、数学能力概述 1.能力概述 能力是指个体能胜任某种活动所具有的心理特征2.数学能力 。
2.小学数学知识的相关基础理论知识有哪些
小学数学学习概述数学学习主要是对学生数学思维能力的培养。
这要以数学基础知识和基本技能为基础,以数学问题为诱因,以数学思想方法为核心,以数学活动为主线,遵循数学的内在规律和学生的思维规律开展教学。学习类型分析 1.方式性分类(1)接受学习与发现学习定义:将学习的内容以定论的形式呈现给学习者的学习方式。
模式:呈现材料—讲解分析—理解领会—反馈巩固(2)发现学习 定义:向学习者提供一定的背景材料,由学习者独立操作而习得知识的学习方式。 模式:呈现材料—假设尝试—认知整合—反馈巩固。
2.知识性分类一(1)知识学习 定义:以理解、掌握数学基础知识为主的学习活动。过程:选择—领会—习得——巩固(2)技能学习定义:将一连串(内部或外部的)动作经练习而形成熟练的、自动化的反应过程。
过程:演示—模仿—练习—熟练—自动化(3)问题解决学习 以关心问题解决过程为主、反思问题解决思考过程的一种数学学习活动。提出问题—分析问题—解决问题—反思过程3.知识性分类二(1)概念性(陈述性)知识的学习 把数学中的概念、定义、公式、法则、原理、定律、规则等都称为概念性知识。
概念学习:同化与形成。 利用已有概念来学习相关新概念的方式,称概念同化;依靠直接经验,从大量的具体例子出发,概括出新概念的本质属性的方式,称为概念形成。
概念形成是小学生获得数学概念的主要形式。(2)技能性(程序性)知识的学习 小学数学技能主要是运算技能。
运算技能的形成分为三个阶段: ①认知阶段:“引导式”的尝试错误。从老师演算例题或自学法则中初步了解运算法则,在头脑中形成运算方法的表征。
②联结阶段:法则阶段,即按法则一步步地运算,保证算对(使用法则解决问题,陈述性知识提供了基本的操作线索)—程序化阶段(将相关的小法则整合为整体的法则系统,此时概念性知识已退出),能算得比较快速正确。③自动化阶段:更清楚更熟练地应用第二阶段中的程序,通过较多的练习,不再思考程序,达到一定程序的自动化,获得了运算的速度和较高的正确率。
(3)问题解决(策略性知识)的学习通过重组所掌握的数学知识,找出解决当前问题的适用策略和方法,从而获得解决问题的策略的学习。小学生解决问题的主要方式,一是尝试错误式(又称试误法),即通过进行无定向的尝试,纠正暂时性尝试错误,直至解决问题;二是顿悟式(也称启发式),好像答案或方法是突然出现的,而实际上是有一定的“心向”作基础的,这就是问题解决所依据的规则、原理的评价和识别。
4.任务性分类(1)记忆操作类学习如口算、尺规作(画)图和掌握基本的运算法则并能进行准确计算等。(2)理解性的学习 如认识并掌握概念的内涵、懂得数学原理并能用于解释或说明、理解一个数学命题并能用于推得新命题。
(3)探索性的学习如需要让学生经过自己探索,发现并提出问题或学习任务,让学生通过自己的探究能总结出一个数学规律或规则,让学生通过自己的探究过程而逐步形成新的策略性知识等。 小学生数学认知学习一、小学生数学认知学习的基本特征 1.生活常识是小学生数学认知的起点 要在儿童的生活常识和数学知识之间构建一座桥梁,让儿童从生活常识和经验出发,不断通过尝试、探索和反思,从而达到“普通常识”的“数学化”。
2.小学生数学认知是一个主体的数学活动过程 数学认知过程要成为一个“做数学”的过程,让儿童从生活常识出发,在“做数学”的过程中,去发现、了解、体验和掌握数学,去认识数学的价值、了解数学的特性、总结数学的规律,去学会用数学、提高数学修养、发展数学能力。3.小学生数学认知思维具有直观化的特征 由于一方面儿童生活常识是其数学认知的基础,另一方面儿童思维是以直观具体形象思维为主,所以要以直观为主要手段,让儿童理解并构建起数学认知结构。
4.小学生数学认知是一个“再发现”和“再创造”的过程 小学生的数学学习,主要的不是被动的接受学习,而是主动的“再发现”和“再创造”学习的过程。要让他们在数学活动或是实践中去重新发现或重新创造数学的概念、命题、法则、方法和原理。
二、小学生数学认知发展的基本规律 1.小学生数学概念的发展 (1)从获得并建立初级概念为主发展到逐步理解并建立二级概念 (2)从认识概念的自身属性逐步发展到理解概念间的关系 (3)数学概念的建立受经验的干扰逐渐减弱2.小学生数学技能的发展 (1)从依赖结构完满的示范导向发展到依赖对内部意义的理解 (2)从外部的展开的思维发展到内部的压缩的思维 (3)数感和符号意识的逐步提高,支持着运算向灵活性、简洁性和多样性发展3.小学生空间知觉能力的发展 (1)方位感是逐步建立的 (2)空间概念的建立逐渐从外显特征的把握发展到对本质特征的把握 (3)空间透视能力是逐步增强的 4.小学生数学问题解决能力的发展 (1)语言表述阶段 (2)理解结构阶段 (3)多级推理能力的形成 (4)符号运算阶段 小学生数学能力的培养一、数学能力概述 1.能力概述 能力是指个体能胜任某种活动所具有的心理特征2.数学能力 数学能力是顺利完。
3.小学数学知识重点有哪些
小学数学公式大全,第一部分: 概念。
1,加法交换律:两数相加交换加数的位置,和不变。 2,加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3,乘法交换律:两数相乘,交换因数的位置,积不变。 4,乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5,乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。 如:(2+4)*5=2*5+4*5 6,除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
0除以任何不是0的数都得0。 简便乘法:被乘数,乘数末尾有0的乘法,可以先把0前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7,什么叫等式 等号左边的数值与等号右边的数值相等的式子叫做等式。 等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8,什么叫方程式 答:含有未知数的等式叫方程式。 9, 什么叫一元一次方程式 答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
10,分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。 11,分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。 12,分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。 13,分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14,分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。 15,分数除以整数(0除外),等于分数乘以这个整数的倒数。
16,真分数:分子比分母小的分数叫做真分数。 17,假分数:分子比分母大或分子和分母相等的分数叫做假分数。
假分数大于或等于1。 18,带分数:把假分数写成整数和真分数的形式,叫做带分数。
19,分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。 20,一个数除以分数,等于这个数乘以分数的倒数。
21,甲数除以乙数(0除外),等于甲数乘以乙数的倒数。 分数的加,减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。 分数的乘法则:用分子的积做分子,用分母的积做分母。
22,什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3 比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
23,什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18 24,比例的基本性质:在比例里,两外项之积等于两内项之积。
25,解比例:求比例中的未知项,叫做解比例。如3:χ=9:18 26,正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。
如:y/x=k( k一定)或kx=y 27,反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。 如:x*y = k( k一定)或k / x = y 28,百分数:表示一个数是另一个数的百分之几的数,叫做百分数。
百分数也叫做百分率或百分比。 29,把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。
其实,把小数化成百分数,只要把这个小数乘以100%就行了。 30,把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
31,把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。
32,把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。 33,要学会把小数化成分数和把分数化成小数的化发。
34,最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。(或几个数公有的约数,叫做这几个数的公约数。
其中最大的一个, 叫做最大公约数。) 35,互质数: 公约数只有1的两个数,叫做互质数。
36,最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。 37,通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。
(通分用最小公倍数) 38,约分:把一个分数化成同它相等,但分子,分母都比较小的分数,叫做约分。(约分用最大公约数) 39,最简分数:分子,分母是互质数的分数,叫做最简分数。
40,分数计算到最后,得数必须化成最简分数。 41,个位上是0,2,4,6,8的数,都能被2整除,即能用2进行约分。
个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。
43,偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。
44,质数(素数):一个数,如。
4.数学的基本知识
我只能给你总结一些知识点,见谅见谅 ,但是肯定比复制的好!
初中的数学主要是分代数和几何两大部分,两者在中考中所占的比例,代数略大于几何(我不知道你是哪里的人,反正在我们江苏省泰州市的中考中是这样的)。
代数主要有以下几点:1,有理数的运算,主要讲有理数的三级运算(加减乘除和乘方开方)在这里要注意数字和字母的符号意识,就是,不要受小学数字的影响,一看见字母就不会做题了。2,整式的三级运算,注意符号意识的培养,还有就是因式分解,这和整式的乘法是互换的,注意像平方差公式和完全平方公式的正用、逆用和变形用。3,方程,会一元一次、二元一次、三元一次、一元二次四种方程的解法和应用,记住,方程是一种方法,是一种解题的手段。4,函数,会识别一次函数、二次函数、反比例函数的图像,记住他们的特征,要会根据条件来应用。尤其要注意二次函数,这是中考的重点和难点。应用题里会拿它来出一道难题的
几何主要有以下几点:1,识别各种平面图形和立体图形,这你应该非常熟悉。2,图形的平移、旋转和轴对称,这个考察你的空间想象的能力,多做一些题。3,三角形的全等和相似,要会证明,注意要有完整的过程和严密的步骤,背过证明三角形全等的五种方法和证明相似的四种方法;还有像等腰三角形、直角三角形和黄金三角形的性质,要会应用,这在证明题中会有很大的帮助。4,四边形,把握好平行四边形、长方形、正方形、菱形和梯形的概念,选择体里会拿着它们之间的微小差异而大做文章,注意它们的判定和性质,证明题里也会考到。5,圆,我这里没有细学,因为这里不是我们中考的重点,但是圆的难度会很大,它的知识点很多、很碎,圆的难题就是由许许多多细小的点构成的。
以上就是我对初中数学知识的总结,不过,这毕竟是我的东西,我是个高中生,初中的课本我也有一段时间没碰过了,有遗漏之处,就要靠你的努力了(不好意思,题目我也没有)
易错题型你可以看看”天骄之路”丛书或上网搜索,最好是向老师要一点资料.
5.如何进行小学数学基础知识的复习
小学的知识注重于概念,所以小学部分的知识复习要围绕着概念进行。
1、数的认识
从数的基本概念来复习,如:数有自然数、整数、分数、小数、百分数、正数、负数之分。根据数的性质,数又有:偶数、奇数,质数、合数之分;根据数的关系数又有:互质数、约数、倍数、众数、中位数之分。
2、数的运算
加法:求几个数的和的运算;
减法:已知两个数的和,和一个加数,求另一个加数的运算(因为减法是加法的逆运算);
乘法:求几个相同加数和的运算;
除法:已知两个因数的积,和一个因数,求另一个因数的运算。
简便运算:
加法的结合率、交换律;乘法的结合律、交换律和分配率;减法的性质;除法的性质。
3、方程
方程:含有未知数的等式叫方程。
4、解决问题
A、行程问题:路程=速度 * 时间
相遇问题、背向问题、追及问题
B、生产问题:总产量=工效 * 工作时间
C、利润问题:定价=进价 + 利润
D、利率问题:利息=本金 * 利率 * 时间
E、价格问题:总价=单价 * 数量
5、综合图形:
A、平面图形:
三角形: 按角分:钝角三角形、锐角三角形、直角三角形
按边分:等边三角形、等腰三角形、不等边三角形
正方形:
长方形:
平行四边形:
梯形: 直角梯形、等腰梯形、不等腰梯形
圆:
B、立体图形:
正方体:
长方体:
圆柱体:
圆锥体:
小学就学了这些,而这些都是“算术”,而不是真正意义上的“数学”,只是注重于数的运算。所以,在进行小学部分复习时,要加强概念的重要性,教会学生对于数字的运算和一定的运算方法,这才是小学知识点的重点和作用。
6.小学数学基础知识有哪些
小学一年级 九九乘法口诀表。
学会基础加减乘。小学二年级 完善乘法口诀表,学会除混合运算,基础几何图形。
小学三年级 学会乘法交换律,几何面积周长等,时间量及单位。路程计算,分配律,分数小数。
小学四年级 线角自然数整数,素因数梯形对称,分数小数计算。小学五年级 分数小数乘除法,代数方程及平均,比较大小变换,图形面积体积。
小学六年级 比例百分比概率,圆扇圆柱及圆锥。必背定义、定理公式三角形的面积=底*高÷2。
公式 S= a*h÷2正方形的面积=边长*边长 公式 S= a*a长方形的面积=长*宽 公式 S= a*b平行四边形的面积=底*高 公式 S= a*h梯形的面积=(上底+下底)*高÷2 公式 S=(a+b)h÷2内角和:三角形的内角和=180度。长方体的体积=长*宽*高 公式:V=abh长方体(或正方体)的体积=底面积*高 公式:V=abh正方体的体积=棱长*棱长*棱长 公式:V=aaa圆的周长=直径*π 公式:L=πd=2πr圆的面积=半径*半径*π 公式:S=πr2圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
公式:S=ch=πdh=2πrh圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2圆柱的体积:圆柱的体积等于底面积乘高。
公式:V=Sh圆锥的体积=1/3底面*积高。公式:V=1/3Sh分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。读懂理解会应用以下定义定理性质公式一、算术方面1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)*5=2*5+4*56、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。7、么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。8、什么叫方程式?答:含有未知数的等式叫方程式。
9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。学会一元一次方程式的例法及计算。
即例出代有χ的算式并计算。10、分数:把单位”1″平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
18、带分数:把假分数写成整数和真分数的形式,叫做带分数。19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
20、一个数除以分数,等于这个数乘以分数的倒数。21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
数量关系计算公式方面(南京家教网整理)1、单价*数量=总价2、单产量*数量=总产量3、速度*时间=路程4、工效*时间=工作总量5、加数+加数=和 一个加数=和+另一个加数被减数-减数=差 减数=被减数-差 被减数=减数+差因数*因数=积 一个因数=积÷另一个因数被除数÷除数=商 除数=被除数÷商 被除数=商*除数。
7.小学基础知识
语文基础知识一、两种语言类型:口语、书面语。
二、三种人称:第一人称、第二人称、第三人称三、三种感情色彩:褒义、贬义、中性。四、四种文学体裁:小说、诗歌、戏剧、散文。
五、句子的四种用途:陈述句、问句、祈使句、感叹句六、六种病句类型:1 成分残缺;2 搭配不当;3 关联词语使用不恰当;4 前后矛盾;5 语序不当;6 误用滥用虚词(介词)七、表达方式:记叙、描写、抒情、说明、议论八、表现手法:象征、对比、烘托、设置悬念、前后呼应、欲扬先抑、托物言志、借物抒情、联想、想象、衬托(正衬、反衬)九、修辞手法:比喻、拟人、夸张、排比、对偶、引用、设问、反问、反复、互文、对比、借代、反语、双关十、记叙文六要素:时间、地点、人物、事情的起因、经过、结果十一、记叙顺序:顺叙、倒叙、插叙、补叙十二、叙述方式:概括叙述、细节描写十三、记叙线索:实物、人物、思想感情变化、时间、地点变换、中心事件(找线索的方法:标题、反复出现的某个词语或某个事物、抒情议论句)十四、描写角度:正面描写、反面描写十五、描写人物的方法:语言、动作、神态、心理、外貌十六、描写景物的角度:视觉、听觉、味觉、嗅觉、触觉十七、环境描写分为:自然环境、社会环境十八、描写景物的方法:动静结合(以动写静)、概括与具体相结合、由远到近(或由近到远)、移步换景十九、景物描写的作用:渲染气氛、烘托人物心情、推动情节发展、表现人物的品质、衬托中心思想二十、抒情方式:直抒胸臆、间接抒情(借景抒情)二十一、说明顺序:时间顺序、空间顺序、逻辑顺序(逻辑顺序六种形式:1 一般—个别 2 现象—本质 3 原因—结果 4 概括—具体 5 部分—整体 6 主要—次要二十二、说明语言:平实、生动二十三、说明文类型:事理说明文、事物说明文二十四、说明方法:举例子、列数字、打比方、作比较、下定义、分类别、作诠释、摹状貌、引用、列图表二十五、议论文三要素:论点、论据、论证二十六、论据:事实论据、道理论据二十七、论证方法:举例(或事实)论证、道理论证(有时也称引用论证)、对比(或正反对比)论证、比喻论证、引用论证。二十八、论证方式:立论、驳论(可反驳论点、论据、论证)二十九、议论文结构:提出问题(引论)、分析问题(本论)、解决问题(结论)三十、结构形式:总分总、总分、分总(分的部分常有并列式、递进式)三十一、小说情节四部分:开端、发展、高潮、结局三十二、小说三要素:人物形象、故事情节、具体环境三十三、引号的作用:1 表引用 2 表讽刺或否定 3 表特定称谓 4 表强调或着重指出 5 特殊含义三十四、破折号用法:1 表注释 2 表插说 3 表声音中断、延续 4 表话题转换 5 表意思递进 三十五、省略号的六种用法:1 表内容省略 2 表语言断续 3 表话未说完 4 表心情矛盾 5 表思维跳跃 6 表思索正在进行三十六、其他:(一) 某句话在句子中的作用:* 文首:开篇点题;渲染气氛(记叙文、小说),埋下伏笔(记叙文、小说),设置悬念(小说),为下文作铺垫;总领下文* 文中:承上启下(过渡);总领下文,总结上文* 文末:点明中心(记叙文、小说);深化主题(记叙文、小说);照应开头(议论文、记叙文、小说)(二) 修辞手法的作用:(1)它本身的作用;(2)结合句子语境* 比喻、拟人:生动形象;答题格式:生动形象地写出了+对象+特性* 排比:有气势、加强语气、一气呵成等答题格式:强调了+对象+特性* 设问:引起读者注意和思考答题格式:引起读者对+对象+特性的注意和思考* 反问:强调,加强语气等* 对比:强调了……突出了……* 反复:强调了……加强语气(三)某句话中某个词换成另一个行吗?为什么?* 动词:不行。
因为该词准确生动具体地写出了……* 形容词:不行。因为该词生动形象地描写了……* 副词(如都、大都、非常、只有等):不行。
因为该词准确地说明了……的情况(表程度、表限制、表时间、表范围等),换了后就变成……,与事实不符。(四)一句话中某两三个词的顺序能否调换?为什么?* 不能。
因为(1)与人们认识事物的(由浅入深、由表入里、由现象到本质)规律不一致;(2)该词与上文是一一对应的关系(3)这些词是递进关系,环环相扣,不能互换。(五)段意的归纳* 记叙文:回答清楚(什么时间、什么地点)什么人做什么事格式:时间+地点+人+事* 说明文:回答清楚说明对象是什么,它的特点是什么格式:说明(介绍)+说明对象+说明内容(特点)* 议论文:回答清楚议论的问题是什么,作者的观点怎样格式:用什么论证方法证明了(论证了)+论点(六)复句关系和常用关联词语:* 并列:既……又……;一边……一边……;不是……而是……* 承接:便;就;于是* 递进:不但……而且……;并且;甚至;更;何况等* 选择:不是……就是……;或者……或者……;要么……要么……;是……还是……;与其……不如……;宁可……也不……* 转折:虽然……但是……;尽管……却……;然而;却;只是;不过等* 因果:因为……所以……;既然…。
8.小学数学基础知识概念
六年级数学上册概念与公式汇总
1.分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
2. (1)分数乘整数的运算法则:分子与整数相乘,分母不变。
(2)分数乘分数的运算法则:用分子相乘的积做分子,分母相乘的积做分母。(分子乘分子,分母乘分母)
3.积与因数的关系:
一个数(0除外)乘大于1的数,积大于这个数。当b >1时,a*b >a.
一个数(0除外)乘小于1的数,积小于这个数。当b